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Motivation, Goals, Basic Strategy

Motivation: Green Ocean Energy-Green Shipping

Offshore windmills

Wave Power Devices

Highly Efficient Ships

Goal: Efficient Inviscid Flow Solvers

1 To predict the nonlinear wave climate at a nearshore installation site

2 To predict the response of the structure(s) to the waves

Strategy: High-order Finite Difference + Fast Iterative Solvers

1 Solve the 3D nonlinear potential flow wave problem

2 Two paths to convergence h-type and p-type

3 Geometric discretization:

Overlapping curvilinear structured blocks (non-breaking waves)
Immersed boundary methods
Domain decomposition, Potential flow/Navier-Stokes
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Nonlinear wave solver development at DTU

Fully nonlinear, extremely dispersive Boussinesq-type equations:

Agnon, Madsen & Schäffer J. Fluid Mech. 399 (1999)

Madsen, Bingham & Schäffer Proc. Roy. Soy. Lond. 359 (2003)

Madsen, Bingham & Liu J. Fluid Mech. 462 (2002)

Fuhrman & Bingham Int. J. Numer. Meth. Fluids 44 (2004)

Fuhrman, Bingham & Madsen Coastal Engineering 52 (2005)

Madsen, Fuhrman, Wang Coastal Engineering 53 (2006)

Fuhrman & Madsen Coastal Engineering 55 (2008)

Bingham, Madsen & Fuhrman Coastal Engineering 56 (2009)

Fully nonlinear potential flow solver (OceanWave3D):

Bingham & Zhang J. Eng. Math. 58 (2007)

Engsig-Karup, Bingham & Lindberg J. Comp. Phys. 228 (2009)

Engsig-Karup, Madsen & Glimberg Int. J. Numer. Meth. Fluids 70
(2012)

Kontos, Bingham & Lindberg J. Hydrodynamics 28 (2016)
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The Basic Solution Strategy

z

x

ζ(x, t)

φ(x, z , t)

h(x)

H

L

(u, v ,w) = (∇φ, ∂zφ)

(

φ̃, w̃
)

∂tζ = −∇ζ · ∇φ̃+ w̃(1 +∇ζ · ∇ζ) KFSBC

∂t φ̃ = −g ζ −
1

2
∇φ̃ · ∇φ̃+

1

2
w̃ 2(1 +∇ζ · ∇ζ) DFSBC
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Laplace Problem for w̃ (Dirichlet to Neumann Operator)1

∇2φ+ ∂zzφ = 0, −h < z < ζ

∂zφ+∇h · ∇φ = 0, z = −h

z

x
ζ

h

1 Bingham & Zhang (2007) J. Eng. Math. 58, (Li & Flemming (1997) Coastal Eng. 30)

5



Introduction The Basic Solution Strategy An Immersed Boundary Method for wave-structure interaction A Streamlined WENO Scheme for stable nonlinear convection

Laplace Problem for w̃ (Dirichlet to Neumann Operator)1

∇2φ+ ∂zzφ = 0, −h < z < ζ

∂zφ+∇h · ∇φ = 0, z = −h

z

x
ζ

h

Sigma transform the vertical coordinate:

σ(x, z , t) =
z + h(x)

ζ(x, t) + h(x)
⇓

1 Bingham & Zhang (2007) J. Eng. Math. 58, (Li & Flemming (1997) Coastal Eng. 30)
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Laplace Problem for w̃ (Dirichlet to Neumann Operator)1

∇2φ+ ∂zzφ = 0, −h < z < ζ

∂zφ+∇h · ∇φ = 0, z = −h

z

x
ζ

h

Sigma transform the vertical coordinate:

σ(x, z , t) =
z + h(x)

ζ(x, t) + h(x)
⇓

Φ = φ̃, σ = 1

∇
2
Φ + ∇

2
σ(∂σΦ) + 2∇σ.∇(∂σΦ) +

(
∇σ.∇σ + ∂zσ

2
)
(∂σσΦ) = 0, 0 ≤ σ < 1

(∂zσ + ∇h.∇σ) (∂σΦ) + ∇h.∇Φ = 0, σ = 0

with Φ(x, σ, t) = φ(x, z, t)

σ

σ = 1

Gives a fixed computational geometry, no need to re-grid

1 Bingham & Zhang (2007) J. Eng. Math. 58, (Li & Flemming (1997) Coastal Eng. 30)
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Solution by Arbitrary-Order Finite Differences2

Fortran 90 open source code (https://github.com/apengsigkarup/OceanWave3D-Fortran90)

Structured, but non-uniform grid.

Choose p + 1 neighbors to develop 1D, p order FD schemes.

Leads to a linear system
Ax = b

A is sparse with at most (p + 1)d , non-zeros per row, in d = 2, 3 dimensions.

GMRES iterative solution preconditioned by the linearized, 2nd-order version of
the matrix:

A−1
2 {A(t) x = b}

One multigrid cycle for the preconditioning step.

Solution in O(10) iterations, independent of physics and # of grid points N.

Time stepping by the classical 4th-order Runge-Kutta scheme.

2 Engsig-Karup, Bingham & Lindberg (2009) J. Comp. Phys. 228
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Scaling of the solution in 3D
Nonlinear test case, 6th-order accurate operators
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Massively parallel C++/CUDA GPU implementation 3

Critical to absolutely minimize memory use

All FD coefficients and transformation weights are re-computed
when needed (not stored!)

GMRES is replaced by the defect-correction scheme (no extra
vectors to save), iteration count is roughly doubled

40 - 100 times speed up for 1 GPU unit vs. 1 CPU

3Engsig-Karup et al (2012) Int. J. Num. Meth. Fluids 70
8



Introduction The Basic Solution Strategy An Immersed Boundary Method for wave-structure interaction A Streamlined WENO Scheme for stable nonlinear convection

Wave-Body Interaction - Immersed Boundary Method4

The solution is built in CUDA/C++ on GPU architectures

Body boundary condition:

n · ∇φ = n · uB , x ∈ SB ,

Identify fluid/ghost points.

The Laplace equation is
solved only on fluid points.

Body points: Projection of
ghost points onto the body.

Form Weighted Least Square
(WLS) stencil for each body
point.

Use the WLS method to
approximate the normal
derivative.

 

 

Fluid points
Free surface points
Ghost points
Body points

4Ole Lindberg post-doc (2012-2014) & Stavros Kontos, PhD project (2013-2016).
9



Introduction The Basic Solution Strategy An Immersed Boundary Method for wave-structure interaction A Streamlined WENO Scheme for stable nonlinear convection

The Linear Forward Speed Problem
∂
∂t

∣

∣

∣

fixed
= ∂

∂t

∣

∣

∣

moving
− U ∂

∂x
, simple upwinding is stable

∂tζ − U ∂xζ = ∂z φ̃ KFSBC

∂t φ̃− U ∂x φ̃ = −gζ DFSBC

“Upwinding” on the ship boundary Upwind-biased convection
∂φ
∂n on Sb.

∂
∂x on z = 0.
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Linear Resistance, Seakeeping and Added Resistance
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A WENO Scheme for Nonlinear Ship Motions5

The Non-Linear Forward Speed Problem

∂tζ + ∂xζ
(

∂x φ̃− ∂z φ̃ ∂xζ − U
)

= ∂z φ̃

∂t φ̃+ ∂x φ̃
(

1
2∂x φ̃− U

)

− 1
2 (∂z φ̃)

2 (1 + ∂xζ ∂xζ) = −gζ

Simple upwinding of the convective terms is not stable.

5Stavros Kontos, PhD Thesis (2013-2016).
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A WENO Scheme for Nonlinear Ship Motions5

The Non-Linear Forward Speed Problem

∂tζ + ∂xζ
(

∂x φ̃− ∂z φ̃ ∂xζ − U
)

= ∂z φ̃

∂t φ̃+ ∂x φ̃
(

1
2∂x φ̃− U

)

− 1
2 (∂z φ̃)

2 (1 + ∂xζ ∂xζ) = −gζ

Simple upwinding of the convective terms is not stable.

Nonlinear convective problems require a nonlinear convective
scheme!

Motivated by the work of Osher & Shu et al, we have developed a
nonlinear Weighted Essentially Non Oscillatory (WENO) scheme.

5Stavros Kontos, PhD Thesis (2013-2016).
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The 1-D ENO Finite Difference scheme6

We need an approximation to the convective term ∂φ
∂x

at grid point i , φ
(1)
i

≈ ∂φ
∂x

∣

∣

∣

x=xi

i-2 i-1 i i+1

Substencil 0

Substencil 1

φ
(1)−
i

i-1 i i+1 i+2

Substencil 0

Substencil 1

φ
(1)+
i

Left-biased stencil (p = 2). Right-Biased stencil (p = 2).
Core Idea:

Use only the smoothest sub-stencil to obtain a pth-order

approximation of φ
(1)−/+
i .

Combine the plus and minus approximation with an appropriate flux
to obtain the final result.

6Osher & Shu (1991) SIAM J. Numer. Anal.
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1-D WENO Finite Difference scheme7

Core Idea: Combine the approximations on all sub-stencils using
non-linear weights ωs :

φ
(1)−
i =

p−1
∑

s=0

ωsφ
(1)
s,i

If the solution is locally smooth, exploit the full extended stencil
width.
⇒ High Accuracy: (2p − 1)th-order.

Any stencils that contain discontinuities are weighted to zero.
⇒ Convergent approximation at pth order accuracy.

7See e.g.C.-W. Shu (2009) SIAM Review
14



Introduction The Basic Solution Strategy An Immersed Boundary Method for wave-structure interaction A Streamlined WENO Scheme for stable nonlinear convection

1-D WENO Finite Difference scheme
Non-Linear Weights

Non-Linear Weights ωs

ωs =
as

∑p−1
s=0 as

, as =
ds

(ǫ+ βs)2
, s = 0, . . . , p − 1

The ds : constant linear weights. Smooth solution ⇒ (2p − 1)th-order.

The βs : ”smoothness indicators” which become large whenever
discontinuities exist in the solution.

The ǫ = 10−6 avoids division by zero.
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1-D WENO Finite Difference scheme8

Automated Derivation of the Linear Weights ds

The ds have been derived using symbolic manipulation and
tabulated in the litterature up to p = 7

In fact they can be computed to arbitrary order by solving a simple
Vandermonde-type system similar to the derivation of FD schemes

Conditions:

φ
(1)−
i =

p−1
∑

s=0

dsφ
(1)
s,i ⇒ (2p − 1)th-order.

p−1
∑

s=0

ds = 1

We seek p coefficients which set to zero the first p − 1 truncation error
terms in the Taylor series expansion of the combined derivative
approximation; and sum to one.

8Kontos et al (2016) J. Hydrodynamics
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1-D WENO Finite Difference scheme
Automated Derivation of the Linear Weights ds

An example

Consider the left-hand derivative approximation with p = 2:

φ
(1)
0,i =

1

∆x

(

1

2
φi−2 − 2φi−1 +

3

2
φi

)

φ
(1)
1,i =

1

∆x

(

−
1

2
φi−1 +

1

2
φi+1

)

with leading truncation error terms

φ
(1)
i = φ

(1)
0,i −

1

3
φ
(3)
i ∆x2 + . . .

φ
(1)
i = φ

(1)
1,i +

1

6
φ
(3)
i ∆x2 + . . .

where φ
(n)
i indicates the exact nth derivative of φ at grid point i .
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1-D WENO Finite Difference scheme
Automated Derivation of the Linear Weights ds

An example

Set up a system of equations for the linear weights ds :

[

− 1
3

1
6

1 1

] [

d0
d1

]

=

[

0
1

]

which gives: d0 = 1/3, d1 = 2/3, and the full order 2r − 1 approximation:

φ
(1)−
i =

∑1
s=0 ds φ

(1)
s,i =

1

∆x

(

1

6
φi−2 − φi−1 +

1

2
φi +

1

3
φi+1

)

which is exactly the 4-point, 3rd-order approximation of φ
(1)
i which is

obtained from a direct derivation of the coefficients.

Recovers all tabulated ds values in the literature

Easy to code and implement arbitrarily high-order schemes

Can be applied on non-uniform grids
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1-D WENO Finite Difference scheme9

Smoothness Indicators

Also here, integrated forms have been derived using symbolic
manipulation and tabulated in the litterature up to p = 7

We propose a simplified smoothness indicator defined by:

βs =

p
∑

n=2

(

φ
(n)
s,i ∆xn−1

)2

the sum of all possible higher derivatives on the stencil, scaled to have
units of velocity (m/sec). Turns out to be a good measure of the
smoothness of the velocity.

9Kontos et al (2016) J. Hydrodynamics
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1-D WENO Finite Difference scheme
Smoothness Indicators comparison

The Smooth and Discontinuous Test Functions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8

x
 

 

φ(x)
φ(1)(x)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
 

 

φ(x)
φ(1)(x)

Smooth φ(x). Discontinuous φ(x).

20



Introduction The Basic Solution Strategy An Immersed Boundary Method for wave-structure interaction A Streamlined WENO Scheme for stable nonlinear convection

1-D WENO Finite Difference scheme
Convergence of the derivative of a Smooth Function
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1-D WENO Finite Difference scheme
Convergence of the derivative of a Discontinuous Function
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Hamilton-Jacobi Equations

General form:
φt + H(∇φ) = S

Spatial discretization ⇒ Numerical Hamiltonian

Ĥ(φ−

x , φ
+
x , φ

−

y , φ
+
y , φ

−

z , φ
+
z ) ≈ H(∇φ)

Numerical Hamiltonian approximation applied here:

Local Local Lax-Friedrichs Scheme10

10Shu & Osher J. Comp. Phys. 77(2) (1989)
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Hamilton-Jacobi Equations
Lax-Friedrichs Scheme

The Local Local Lax-Friedrichs scheme is given by:

Ĥ = H

(

φ−
x + φ+

x

2
,
φ−
y + φ+

y

2

)

− ax
(

φ+
x − φ−

x

2

)

− ay
(

φ+
y − φ−

y

2

)

where ax and ay are dissipation coefficients for controlling the amount of
numerical viscosity. They are defined as:

ax = max |H1(φx , φy )
±

i ,j |, ay = max |H2(φx , φy )
±

i ,j |

H1 and H2 are the partial derivatives of H with respect to φx and φy ,
respectively and only the values at grid point i , j are considered.
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WENO on the Non-Linear Forward Speed Problem

WENO formulation of the FSBCs:

∂tζ + Hζ = ∂z φ̃

∂t φ̃+ Hφ = −gζ

where RHS terms ⇒ source terms and

Hζ = ∂xζ
(

∂x φ̃− ∂z φ̃ ∂xζ − U
)

Hφ = ∂x φ̃
(

1
2∂x φ̃− U

)

− 1
2 (∂z φ̃)

2 (1 + ∂xζ ∂xζ)

The dissipation coefficients are:

axζ = max |H1,ζ(ζx , φ̃x )
±

i ,j | = max |(φ̃x − 2φ̃z ζx − U)±i ,j |

axφ = max |H1,φ(ζx , φ̃x)
±

i ,j | = max |(φ̃x − U)±i ,j |
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WENO on the Non-Linear Forward Speed Problem
Representative Test Case

WENO 4 & 6 vs Upwind 6th order FD
Steep Stream Function Wave in Deep Water.

Wave height: 90% of the stable limit, H/L = 0.1273

Periodic lateral boundary conditions

x-direction: uniform grid

z-direction: cosine stretched grid

−4c ≤ U ≤ 4c .

Cr = 0.5.

Nx = 64, Nz = 9

The solution is propagated for ten periods and

energy conservation is measured:

E =
ρ

2

∫

S0

(φ̃ζt + gζ2)dxdy
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WENO on the Non-Linear Forward Speed Problem
Test Case Results

U = 4c
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WENO on the Non-Linear Forward Speed Problem
Test Case Results

U = −4c
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WENO on the Non-Linear Forward Speed Problem
Test Case Results

U = 1/10c
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WENO on the Non-Linear Forward Speed Problem
Test Case Results

U = −1/10c
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2D Results
A heaving circular cylinder, U = 0

First-Order Forces Second-Order Forces
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2D Results
A submerged cylinder at steady forward speed

Steady wave pattern behind the cylinder
Froude number = 0.4 Froude number=0.8
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Conclusions

High order finite difference methods are a viable alternative to BEM
methods for efficient nonlinear potential flow wave-structure
interaction

Nonlinear convective problems require nonlinear discrete convective
schemes to achieve stability

The WENO scheme provides stability while maintaining high-order
numerical accuracy

Challenges

Free-body resonse - couple with the equations of motion

Capturing the free-surface/body intersection for large motions

Rational treatment of wave breaking
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Thanks for your attention!
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Error in dispersion for the Padé (4,4) Boussinesq model
(For reference)
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OceanWave3D error in linear dispersion
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Highly nonlinear deep water waves (stream function theory)
kh = 2π, H/L =90% of breaking, p = 6, Cr = 0.5
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GPU code typical application example
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JONSWAP spectrum: Hs=10m, Tp=15s, h=100m

A 50 year storm condition in the North Sea

Resolve components with S ≥ 0.01Smax ≥ 8 points per λ

7 by 7 km domain gives N ≈ 20 million

CPU time on one GPU: ≈ 12 min. per peak period

1 hour real time → 48 hours CPU time

In progress:

MPI extension to multiple GPU units

Wave breaking model
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