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Introduction

Motivation, Goals, Basic Strategy

Motivation: Green Ocean Energy-Green Shipping
m Offshore windmills
m Wave Power Devices
m Highly Efficient Ships
Goal: Efficient Inviscid Flow Solvers
To predict the nonlinear wave climate at a nearshore installation site

To predict the response of the structure(s) to the waves
Strategy: High-order Finite Difference + Fast Iterative Solvers

Solve the 3D nonlinear potential flow wave problem
Two paths to convergence h-type and p-type
Geometric discretization:

m Overlapping curvilinear structured blocks (non-breaking waves)
m Immersed boundary methods
m Domain decomposition, Potential flow/Navier-Stokes



The Basic Solution Strategy

Nonlinear wave solver development at DTU

Fully nonlinear, extremely dispersive Boussinesg-type equations:

Agnon, Madsen & Schiffer J. Fluid Mech. 399 (1999)

Madsen, Bingham & Schéffer Proc. Roy. Soy. Lond. 359 (2003)
Madsen, Bingham & Liu J. Fluid Mech. 462 (2002)

Fuhrman & Bingham Int. J. Numer. Meth. Fluids 44 (2004)
Fuhrman, Bingham & Madsen Coastal Engineering 52 (2005)
Madsen, Fuhrman, Wang Coastal Engineering 53 (2006)
Fuhrman & Madsen Coastal Engineering 55 (2008)

Bingham, Madsen & Fuhrman Coastal Engineering 56 (2009)

Fully nonlinear potential flow solver (OceanWave3D):

Bingham & Zhang J. Eng. Math. 58 (2007)
Engsig-Karup, Bingham & Lindberg J. Comp. Phys. 228 (2009)

Engsig-Karup, Madsen & Glimberg Int. J. Numer. Meth. Fluids 70
(2012)

Kontos, Bingham & Lindberg J. Hydrodynamics 28 (2016)



The Basic Solution Strategy

The Basic Solution Strategy

¢ = —V(¢-Vé+w(l+ V- V) KFSBC
hp= —g(— %W} Vo + %v”vz(l +V(-V¢) DFSBC



The Basic Solution Strategy

Laplace Problem for w (Dirichlet to Neumann Operator)®

¢ 2
V2 +0.¢ =0, —h<z<( >‘4 x
0:0+Vh-V¢ =0, z=—h ih

! Bingham & Zhang (2007) J. Eng. Math. 58, (Li & Flemming (1997) Coastal Eng. 30)



The Basic Solution Strategy

Laplace Problem for w (Dirichlet to Neumann Operator)®

Z 4
O N
V2 +0.¢6 =0, —h<z<(
8,6 +Vh-V¢ =0, z=—h ih
Sigma transform the vertical coordinate:
z + h(x) [}

o(x,z,t) =

¢(x, t) + h(x)

! Bingham & Zhang (2007) J. Eng. Math. 58, (Li & Flemming (1997) Coastal Eng. 30)



The Basic Solution Strategy

Laplace Problem for w (Dirichlet to Neumann Operator)®

V2 + 0,9 =0, —h<z<(
90+ Vh-Vé =0, z=—h

Sigma transform the vertical coordinate:

z + h(x) [}

o(x,z,t) =
C(x, t) + h(x)
o
® = ¢, o=1 o=1
2 2 Pl
V20 + V26(050) + 2V 0. V(959)  + : ’
(VO'.VO‘ + 8102) (Bge®) = 0, 0<o<1
(820 + Vh. Vo) (8g®) + VAV = 0, o=0

with ®(x, o, t) = ¢(x, z, t)

m Gives a fixed computational geometry, no need to re-grid

! Bingham & Zhang (2007) J. Eng. Math. 58, (Li & Flemming (1997) Coastal Eng. 30)



The Basic Solution Strategy

Solution by Arbitrary-Order Finite Differences?

Fortran 90 open source code (https://github.com/apengsigkarup/OceanWave3D-Fortran90)

B Structured, but non-uniform grid.

Choose p + 1 neighbors to develop 1D, p order FD schemes.

Leads to a linear system
Ax=b
A is sparse with at most (p 4 1)9, non-zeros per row, in d = 2,3 dimensions.

m GMRES iterative solution preconditioned by the linearized, 2nd-order version of
the matrix: .
A" {A(t)x =b}

One multigrid cycle for the preconditioning step.

Solution in O(10) iterations, independent of physics and # of grid points N.

Time stepping by the classical 4th-order Runge-Kutta scheme.

N

Engsig-Karup, Bingham & Lindberg (2009) J. Comp. Phys. 228



The Basic Solution Strategy

Scaling of the solution in 3D

Nonlinear test case, 6%h_order accurate operators
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Massively parallel C++/CUDA GPU implementation 3

m Critical to absolutely minimize memory use

m All FD coefficients and transformation weights are re-computed
when needed (not stored!)

m GMRES is replaced by the defect-correction scheme (no extra
vectors to save), iteration count is roughly doubled

m 40 - 100 times speed up for 1 GPU unit vs. 1 CPU

3Engsig-Karup et al (2012) Int. J. Num. Meth. Fluids 70



5y An Immersed Boundary Method for wave-structure interaction

Wave-Body Interaction - Immersed Boundary Method*
The solution is built in CUDA/C++ on GPU architectures

Body boundary condition:

n-Vo=n-ug, xe Sg,

m ldentify fluid/ghost points.

. . . Fluid‘ pointé
m The Laplace equation is | Free surface points

H H ® Ghost points
solved only on fluid points. « Body points

m Body points: Projection of
ghost points onto the body. o S

m Form Weighted Least Square
(WLS) stencil for each body
point.

m Use the WLS method to
approximate the normal
derivative.

4Ole Lindberg post-doc (2012-2014) & Stavros Kontos, PhD. project -(2013=2016):




An Immersed Boundary Method for wave-structure interaction

The Linear Forward Speed Problem

Belpy = ¢ ovine U2, simple upwinding is stable
O —UB(C = 8,6 KFSBC
di¢p— Udp= —g¢ DFSBC
“Upwinding” on the ship boundary Upwind-biased convection
%onSb. a%onz:o.

L =T

Neumann | extrapolation

W=(Ux,0,0)




© Experiment (Journee 1992)

——OceanWave3D (057 - coarse)
OceanWave3D (0.70)
OceanWave3D (0.85)

——OceanWave3D (0.95)

—— OceanWave3D (100 - fine)

© Experiment (Journee 1992)
——OceanWave3D (057 - coarse)|

—— OceanWave3D (10D - fine)




A WENO Scheme for Nonlinear Ship Motions®

The Non-Linear Forward Speed Problem

FSBC U

b2t hatpy =0 n-Vo=n-up

8:C + D¢ (8qu~5 — 0,40, — U) — 9,4
0ub+ 0.8 (3066 — U) = 307 (1+ 0. 0:0) = —g¢

m Simple upwinding of the convective terms is not stable.

5Stavros Kontos, PhD Thesis (2013-2016).



A WENO Scheme for Nonlinear Ship Motions®

The Non-Linear Forward Speed Problem

FSBC U

8:C + D¢ (axq“s — 0,40, — U) — 9,4
0ub+ 0.8 (3066 — U) = 307 (1+ 0. 0:0) = —g¢

m Simple upwinding of the convective terms is not stable.

m Nonlinear convective problems require a nonlinear convective
scheme!

m Motivated by the work of Osher & Shu et al, we have developed a

nonlinear Weighted Essentially Non Oscillatory (WENQO) scheme.
5Stavros Kontos, PhD Thesis (2013-2016).




A Streamlined WENO Scheme for stable nonlinear

The 1-D ENO Finite Difference scheme®

We need an approximation to the convective term g—f at grid point i, ¢>§1) ~ g—f

X=X
o 9

Substencil 0 Substencil 0

- 4]

Substencil 1 Substencil 1

Left-biased stencil (p = 2). Right-Biased stencil (p = 2).
Core Idea:

m Use only the smoothest sub-stencil to obtain a p'-order
approximation of ¢§1)7/+.
m Combine the plus and minus approximation with an appropriate flux

to obtain the final result.

6Osher & Shu (1991) SIAM J. Numer. Anal.
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1-D WENO Finite Difference scheme’

Core Idea: Combine the approximations on all sub-stencils using
non-linear weights ws:

p—1
o = wil)
s=0

m If the solution is locally smooth, exploit the full extended stencil
width.
= High Accuracy: (2p — 1)*-order.

m Any stencils that contain discontinuities are weighted to zero.
= Convergent approximation at p" order accuracy.

"See e.g.C.-W. Shu (2009) SIAM Review



1-D WENO Finite Difference scheme

Non-Linear Weights

Non-Linear Weights ws

s a % s=0 p—1
ws - —n_1 S - RV E = )t -
P CEu A

The ds: constant linear weights. Smooth solution = (2p — 1)-order.

The Bs: "smoothness indicators” which become large whenever
discontinuities exist in the solution.

The € = 107° avoids division by zero.



1-D WENO Finite Difference scheme®

Automated Derivation of the Linear Weights ds

m The ds have been derived using symbolic manipulation and
tabulated in the litterature upto p=7

m In fact they can be computed to arbitrary order by solving a simple
Vandermonde-type system similar to the derivation of FD schemes

Conditions:

p—1
m ) = Zo d5¢Si) = (2p — 1)"-order.

p—1
m Y di=1
s=0
We seek p coefficients which set to zero the first p — 1 truncation error

terms in the Taylor series expansion of the combined derivative
approximation; and sum to one.

8Kontos et al (2016) J. Hydrodynamics



1-D WENO Finite Difference scheme

Automated Derivation of the Linear Weights ds

An example

Consider the left-hand derivative approximation with p = 2:

1 1 /1 3
87,? = (§¢i2 —2¢j-1+ §¢i>

Ax
o _ /1. 1.
Li T Ax ( 2¢:—1 + 2¢:+1
with leading truncation error terms
1

1
o) o)+ gol? n

where qSE") indicates the exact nth derivative of ¢ at grid point .



1-D WENO Finite Difference scheme

Automated Derivation of the Linear Weights ds

An example

Set up a system of equations for the linear weights d:

|-

which gives: dy = 1/3, di = 2/3, and the full order 2r — 1 approximation:
_ 1 /1 1 1
o =Y edel) = Ax (6¢i—2 — -1t 56+ §¢;+1)

which is exactly the 4-point, 3"4-order approximation of gbgl) which is
obtained from a direct derivation of the coefficients.

m Recovers all tabulated ds values in the literature
m Easy to code and implement arbitrarily high-order schemes
m Can be applied on non-uniform grids



1-D WENO Finite Difference scheme®

Smoothness Indicators

m Also here, integrated forms have been derived using symbolic
manipulation and tabulated in the litterature upto p =7

We propose a simplified smoothness indicator defined by:

5= (6 axr)”

n=2

the sum of all possible higher derivatives on the stencil, scaled to have
units of velocity (m/sec). Turns out to be a good measure of the
smoothness of the velocity.

9Kontos et al (2016) J. Hydrodynamics



A Streamlined WENO Scheme for stable nonlinear

1-D WENO Finite Difference scheme

Smoothness Indicators comparison

The Smooth and Discontinuous Test Functions

(] o1 0z 03 04 05 06 07 08 09 1 = E =l EY

Smooth ¢(x). Discontinuous ¢(x).




1-D WENO Finite Difference scheme

Convergence of the derivative of a Smooth Function

10 \/__—-. 10 /
WENO 5. WENO 6.

A Streamlined WENO Scheme for stable nonlinear



A Streamlined WENO Scheme for stable nonlinear

1-D WENO Finite Difference scheme

Convergence of the derivative of a Discontinuous Function




A Streamlined WENO Scheme for stable nonlinear

Hamilton-Jacobi Equations

General form:

o+ H(V¢7) =S

Spatial discretization = Numerical Hamiltonian
Aoy 65,0y, 05,07, 03) = H(V o)

m Numerical Hamiltonian approximation applied here:

m Local Local Lax-Friedrichs Scheme®®

0Shu & Osher J. Comp. Phys. 77(2) (1989)



A Streamlined WENO Scheme for stable nonlinear

Hamilton-Jacobi Equations

Lax-Friedrichs Scheme

The Local Local Lax-Friedrichs scheme is given by:

2

H_H(asx—;qzsr,as;;@) _ax(qsr;as;)_ay(as;—qs;)

where a* and a” are dissipation coefficients for controlling the amount of
numerical viscosity. They are defined as:
X — H + y H +
@ = max|Hy(dx, dy)ijl, @ = max|Hy(ox, dy)7 ]

Hy and Ho are the partial derivatives of H with respect to ¢, and ¢,,
respectively and only the values at grid point 7, are considered.



WENO on the Non-Linear Forward Speed Problem

WENO formulation of the FSBCs:
0eC + He = 0.9
0ed + Hy = —g¢
where RHS terms = source terms and
w He = 0C (8X¢~5 — 9,4 0. — U)
w Hy = 0.6 (30:0— U) = 3(0.0) (1+ 8¢ 0:)
The dissipation coefficients are:
maf = max|H1,<(§X,$x)i-| = max|(¢x — 262 G — U),ij
u a;& = maX|H1’¢(CX,$X)i[j| = max|($x - U),ji,



A Streamlined WENO Scheme for stable nonlinear

WENO on the Non-Linear Forward Speed Problem

Representative Test Case

WENO 4 & 6 vs Upwind 6th order FD

Steep Stream Function Wave in Deep Water.

Wave height: 90% of the stable limit, H/L = 0.1273
Periodic lateral boundary conditions

x-direction: uniform grid

z-direction: cosine stretched grid

—4c < U <4ec.

Cr=0.5.

Nx =64, Nz=9

The solution is propagated for ten periods and

energy conservation is measured:

E= 2/50(55@ + g¢%)dxdy



A Streamlined WENO Scheme for stable nonlinear

WENO on the Non-Linear Forward Speed Problem

Test Case Results

x 10
4
0.14 1
0.12 - 2
LU =de
0.1 k
0.08 - 3: 9 mg““mm:
- i = 12222880000,
0.6 | Fo2 B ..,
~ 004 3 B‘J “‘000000
0.02 ==
0 3 -6
-0.02] 1
-0.04 1 -8
~0.06 . 0 2 4 6 8 10
2 4 . 1
0 04 08 08 /T



A Streamlined WENO Schem

WENO on the Non-Linear Forward Speed Problem

Test Case Results

x 10
4
0.14
0.12 2
0.1 R
08 S Opmssmssmmmecesnce
— Sd LYY
0.06 =2 ’n.,.‘. ”-uu...,n.n.n.n
= | e,
0.04 o,
R4 .,
0.02 v,
.
) . o,
-0.02
~0.04] -8
-0.06 0 2 4 6 8 10
/T




A Streamlined WENO Scheme for stable nonlinear

WENO on the Non-Linear Forward Speed Problem

Test Case Results

U=1/10c

x 107
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A Streamlined WENO Scheme for stable nonlinear

WENO on the Non-Linear Forward Speed Problem

Test Case Results
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A Streamlined WENO Schem

2D Results

A heaving circular cylinder, U =0

First-Order Forces Second-Order Forces
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2D Results

A submerged cylinder at steady forward speed

Steady wave pattern behind the cylinder
Froude number = 0.4 Froude number=0.8

—Computed
¢ Scullen & Tuck (1995)

— Computed
o Scullen & Tuck (1995) 05

_O'%S 70 75 80 85 65 70 75 80 85



A Streamlined WENO Scheme for stable nonlinear

Conclusions

m High order finite difference methods are a viable alternative to BEM
methods for efficient nonlinear potential flow wave-structure
interaction

m Nonlinear convective problems require nonlinear discrete convective
schemes to achieve stability

m The WENO scheme provides stability while maintaining high-order
numerical accuracy

Challenges

m Free-body resonse - couple with the equations of motion
m Capturing the free-surface/body intersection for large motions

m Rational treatment of wave breaking



A Streamlined WENO Scheme for stable nonlinear

Thanks for your attention!




A Streamlined WENO Scheme for stable nonlinear

Error in dispersion for the Padé (4,4) Boussinesq model

(For reference)

0.05

—— Linear
=— H/L=10%
004 | _A_ H/L=300/D
—6— H/L=50%
——H/L=70%
H/L=90%

0.03f

0.02f

Dispersion errors

0.01}




amlined WENO Scheme f

OceanWave3D error in linear dispersion

Relative dispersion error

Relative dispersion error

p=2 uniform grid, N_=50
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p=4 clustered grid, N_=15
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5
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stable nonlinear



A Streamlined WENO Scheme for stable nonlinear

Highly nonlinear deep water waves (stream function theory)
kh = 27, H/L =90% of breaking, p =6, C, = 0.5

Free surface with N, =32, N,=9 Effect of filtering with N,=64, N,=9
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A Streamlined WENO Scheme for stable nonlinear

GPU code typical application example

3%((:))NSWAP spectrum: Hs=10m, Tp=15s, h=100m

N

200 | H

\
[\
[
R
o / ¥
0.05 0.1 0.15

f [Hz]

0.2

A 50 year storm condition in the North Sea
m Resolve components with S > 0.015,,,,x > 8 points per A
m 7 by 7 km domain gives N ~ 20 million
m CPU time on one GPU: =~ 12 min. per peak period
m 1 hour real time — 48 hours CPU time
In progress:
m MPI extension to multiple GPU units
m Wave breaking model
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