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Water waves problem with variable depth.

Long-wave approximation of the Dirichlet-Neumann operator in 
presence of non-trivial bottom topography.

A Whitham-Boussinesq model that involves a pseudo differential 
operator (PDO).

Discretization of the PDO associated with the bottom topography.

Spectral analysis of the linearized Whitham-Boussinesq model for 
different families of topographies.

Numerical integration of the evolution of some initial wave-profiles 
over different topographies.

Work in progress. Project I. II. III. and IV
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     IDEAL FLUID:
             Perfect
             Incompressible
             Irrotational

Figure 1.  Cartoon of  fluid domain

FLUID DOMAIN:
      2D
      Simple connected

EULER’S EQUATIONS

y = �h0 + �(x)
                                           on the fluid domain
                                           on the variable bottom

Nonlinear boundary conditions on the free surface
@t'+ 1

2 (r')2 + g⌘ = 0

@
t

⌘ + @
x

⌘ · @
x

'� @
y

' = 0

y = ⌘(x, t)

     
on

Water waves problem in variable depth

Problem setting:

Bernulli equation
Kinematic condition

�' = 0
N ·r' = 0
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V.E. Zakharov, 1968, J.W. Miles, 1977,  W. Craig and  C. Sulem., 1992

ZAKHAROV
CRAIG & SULEM
EQUATIONS

with Hamiltonian:

Hamilton equations with infinitely many 
degrees of freedom:

G(β,η) is the DIRICHLET-NEUMANN operator for the fluid domain:

[G(�, ⌘)] : ⇠ 7�! 'y |y=0
�' = 0

'(x, ⌘(x)) = ⇠(x)

N ·r' = 0 On the variable bottom
y = �h0 + �(x)

DEFINITION:
Let us consider the solution of the 
elliptic problem:

H = 1
2

R
R(⇠G(�, ⌘)⇠ + g⌘2)dx
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Hamiltonian:

In general there is not an explicit expression for it!

This case gives rise to an  explicit expression to de DN operator:

D = �i@
x

Where D is as usual the operator 
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However this is not the case for the fluid domain which  takes into account the 
variations in bottom topography as well as the deformations of the free surface 
from equlibrium.

[G(0, 0)] : ⇠ 7�! D tanh(D)⇠

H = 1
2

R
R(⇠G(�, ⌘)⇠ + g⌘2)dx



 
Analitic Expansion of operator:                  

G(�, ⌘) = G0(�, ⌘) +G1(�, ⌘) +G2(�, ⌘)+, ...

G(�, ⌘)

                 are homogeneous of degree    in      .                Gj(�, ⌘) ⌘

G0(�, ⌘) = D tanh(h0D) +DL(�),

G1(�, ⌘) = D⌘D �G0⌘G0,

G2(�, ⌘) =
1

2
(G0D⌘2D �D2⌘2G0 � 2G0⌘G1),

D = �i@
x

L(�)

    ⨳ Craig, Guyenne Nicholls Sulem, 2005 G(0, ⌘)     ⨳ Craig, Sulem, 2005  ,   
    ⨳Proof for              , Lannes,G(�, ⌘)

           ⨳  Proof for               Coifman  and Meyer,1985 , 
               For  ||η||,  forβsmaller enough  (in an appropriate norm) 

with

and              Involve pseudo-differential operators
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The bottom variation represented by β(x) are taken to be of order O(1), while the 
surface deformation  η(x) will be small.

j



The operator        , can be written in the semi-explicit form:

where

and           
    ⨳ W.Craig, P. Guyenne, D. Nicholls & C. Sulem, 2005 
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l

⌘(t, x)
0

� = h2
0

l2 ⌧ 1

�(x)
h0

ADIMENSIONAL PARAMETERS

� = �
h0

✏ = ⌘
h0
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� = h2
0

l2 ⌧ 1

                  Aceves-Sánchez, Minzoni and Panayotaros 
Numerical of a nonlocal Model for water waves with variable depth, 2013 

We want to capture bigger order depth variations!

SHALLOW WATER  REGIME  (LONG-WAVE)

BOUSSINESQ REGIME

BOUSSINESQ REGIME VARIABLE DEPTH (SMALL DEPTH VARIATIONS)
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When the full water waves problem 
is linearized around the zero 
solution ⇢

⌘t = G(0, ⌘)⇠
⇠t = �g⌘.

one finds the classical  
DISPERSION RELATION: 
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Relación de Dispersión

 

 
Exacta
BoussinesqDispersion Relation

Drawback on Boussinesq equations for our purposes:
-> Poor approximation to full dispersion relation for larger wave numbers.
-> Ill posed problem due to negative sign on larger wave numbers.

Whitham’s type equations

Keep term:  G0(�, ⌘) = D tanh(h0D) +DL(�)

wave number

ω

16

14

12

10

8

6

4

2

0
          1        2        3        4        5        6

10

Exact 

Boussines 

Whitham’s- type equations offer the possibility of singularity formation at higher 
amplitudes and the existence of solitons with a cusped profile.

D. Moldabayev, H. Kalisch and D.Dutykh The Whitham Equation as a Model for Surface Water Waves 2014



H = 1
2

R
R(⇠G(�, ⌘)⇠ + g⌘2)dx

 Constant depth.

GA1 = D̃p
✏
tanh(h0

p
✏D̃)� h0D̃�̃D̃ + ✏D̃⌘̃D̃

GA0 = D̃p
✏
tanh(h0

p
✏D̃) + ✏D̃⌘̃D̃

Long-wave approximation of    in presence of non-trivial bottom 
topography. Part I.

G(�, ⌘)
2

 Smooth and small depth variations of order O(ε).
G0(�, ⌘) = D tanh(h0D) +DL(�)
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Aceves-Sánchez, Minzoni and Panayotaros 
Numerical of a nonlocal Model for water waves with variable depth, Wave Motion 2013



                

GA2 = Sym( D̃p
✏
tanh(

p
✏(�1 + �̃(x))D̃)) + ✏D̃⌘̃D̃

Long-wave approximation of    in presence of non-trivial 
bottom topography. Part II.

G(�, ⌘)
2

Satisfies some structural properties of the exact linear DN operator:
                               is real  if     is real valued
                  is a symmetric operator
       Spectra of this operator has good asymptotic behavior as κ increase      
we approach the constant depth dispersion relation an the same condition 
apply to the eigenfunctions.
    is a positive operator.

 

Depth variations of order O(1)
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 Vargas-Magaña, and Panayotaros 
A Whitham-Boussinesq long-wave model for variable depth, Wave Motion 2016 

GA2 [⇠](x) ⇠
GA2

GA2



�(x) =

1
2⇡

R 2⇡
0

0.5
2 (1� 1

2 cos(x))dx = 0.25

                  Aceves-Sánchez, Minzoni y Panayotaros 
Numerical of a nonlocal Model for water waves with variable depth, 2003 
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We show in the picture that the only visible effects detected with this model are 
very  attenuated.



 In 2007 P.Guyenne and P. Nicholls introduced an accurate numerical 
method for nonlinear surface water waves for variable bathymetry in 2D and 
3D using Higher order expansions of the L(β) operator in powers of β(x), 

 P. Guyenne, D. Nicholls Numerical simulations of solitary waves on plane slopes 2007
P.Guyenne, D. Nicholls A high-order spectral method for nonlinear wates waves over moving topography 2007

A possible drawback in this formulation is the presence of higher derivatives in Lj as j 
increased  and the authors also use high frequency truncations of the derivatives.
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a(x,D)⇠(x) =

Z

R
a(x, k)⇠̂(k)eikxdk.

where the function           is the symbol of the  operator. 

Can be represented in its real variables!

Pseudo-differential operator of the form: 

⌘(t, x)

�(x)

⇠ = ' |⌘

0 2⇡

Spectral representation in the 2π-periodic framework

A Whitham-Boussinesq model that involves a pseudo differential 
operator (PDO).

H = 1
2

R
R(⇠GA2(�, ⌘)⇠ + g⌘2)dx

GA2 = Sym( Dp
✏
tanh(

p
✏(�1 + �(x))D)) + ✏D⌘D

a(x, k)

3
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PDO in the 2π-periodic frame

Let                be a function periodic in the variable x of period 2π:
a(x, k)

a(x,D)[⇠](x) =
1

2⇡

1X

k=�1
a(x, k)⇠̂

k

e

ikx

.

a(x, k) =
1X

�=�1
â

�

(k)ei�x.

â

�

(k) =

Z 2⇡

0
a(x, k)e�i�x

dx, � 2 Z

with
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K

a(x,D) =
1

2

Z 2⇡

0
⇠a(x,D)⇠ dx

The quadratic form in the Hamiltonian in the 2π-periodic setting:

K
a(x,D) =

⇡

2

1X

k=�1

1X

�=�1
⇠̂
k

⇠̂
�

â�k��

(�)

If     is real valued  then               is real valued then             is real valued too! ⇠
a(x,D)[⇠] K

a(x,D)
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Discretization of this PDO associated to  the bottom 
topography.  

4

Galerkin truncations of the quadratic form:
Let      

M is the truncation.
Matrix sizes of P and S is MxM
ξ* is the conjugated of ξ
a��() = a⇤�()

18



Letting                               

Letting 

and                          

1

2

3

Splitting of ξ-fourier coefficients  in real variables

Symmetrization

Matrix representation 
in Real variables

Msym

Matrix size of is 2Mx2M
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 Bottom Topography

 Gaussian family           Step family

Spectral analysis of the           matrix for different families of topographies.5
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κMax =29

ε =.01
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The matrix corresponding to β=0 is a diagonal matrix



κMax 
 29

Bottom profile
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The larger entries are on the 
diagonal and the decay of the 
entries from the diagonal is related 
to the amplitud and smoothness of 
β(x).
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κMax 
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Bottom profile

ε 
.01
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We see an enlargement around the diagonal that finishes in an skinny line, first 
the bright region ‘‘opens’’ and then ‘‘closes’’ around the diagonal for larger k. 
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p
��Wave number             

κMax= 27 kMax= 210

Generalized Dispersive Curve : Gaussian Topography

The eigenfrequencies decrease with bathymetry.
There is evidence of monotonicity in the Curve with the depth. When you increase the amplitude 
on the  depth, all the  eigenvalues goes down.
And in the limit as κ you go to infinity we have that we approach the constant depth dispersion 
relation



 Steepening I.

The spectral analysis of matrices pointing to show evidences that the depth 
variation produce significant effects on the eigenmodes: 27
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Mode 1 flat
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 Steepening II.
Topography leads to steeper profiles!
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 Modulation
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Even−Mode 15 with Gaussian `1 topography

 

 
Even−Mode 15  Gaussian `1
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Even−Mode 15 with Gaussian `3 topography

 

 
Even−Mode 15  Gaussian `3
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Odd−Mode 15 with Gaussian `5 topography

 

 
Odd−Mode 15  Gaussian `5

 Mode 15 kMax= 27 
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¿Do there exist a 3-wave resonance?

!k1 + !k2 = !k3

Using the Bathymetry can we have solutions of this 
kind for not small wave number values? 

31

k1 + k2 = k3 +�



Numerical integration of the evolution of some initial wave-profiles over 
different topographies.

6

FULLY SPECTRAL EQUATIONS.  
FOURTH-FIFTH  ORDER ADAMS-BASHFOR/MOULTON

 
H2 =

1

2

Z

R
[⇠(Sym(

Dp
✏
tanh(

p
✏h(x)D)) + ✏D⌘D)⇠ + ⌘2]dx,

(
@t⌘̂k = @H

@⇠̂⇤k

@t⇠̂k = � @H
@⌘̂⇤

k

, k 2 JM , with JM = [1, ...,M ] .

d

dt

0

BB@

↵
�
�
�

1

CCA =

0

BB@

g1(↵,�, �, �)
g2(↵,�, �, �)
g3(↵,�, �, �)
g4(↵,�, �, �)

1

CCA
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Craig and Sulem, Numerical  Simulation of 
gravity waves.,1992,

kMax= 25

tfinal= 120

Second-order approximation of Stokes wavetrain

Flat bottom

ε=0.01 
dt= 0.001
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Our numerical simulations using the Whitham–Boussinesq 
model suggest that variable depth has significant effects on 
the dynamics of surface waves.
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Second-order approximation of Stokes wavetrain
kMax= 25 ε=0.01 

dt= 0.001
tfinal= 120

a= 0.065

λ= 5
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 Modulated wave packet

Craig and Sulem, Numerical  Simulation of gravity waves.,1992,

kMax= 25

ε=0.01 
dt= 0.001
tfinal= 120
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 Modulated wave packet
kMax= 25

ε=0.01 dt= 0.001 tfinal= 120
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Remarks on the accuracy of the numerical integration

Dependence of our results on 
the numerical time step Δt.

Dependence of our results on  
kMax=M
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Work in progress 

I.  Existence of Trapped Modes. Normal modes in a channel of arbitrary 
cross section. With Panayotaros and Minzoni

ΙΙ. Comparison of two approaches to the DN operator: PDO approach and 
CGNS without computing the L(β) operator. 

III. The question of whether the particular AG0 or other approximations of the 
Dirichlet–Neumann operator that avoid expansions in the depth variation 
can be evaluated with an efficiency that is comparable to that of 
pseudospectral methods.

IV. Looking for  triad resonance considering bathymetry.

 V Global bifurcation Theorem of the Stokes waves. With Garcia-Azpeitia 
and Panayotaros.
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Work in progress I.  Trapped Ursell Modes with Panayotaros and Minzoni 

We are looking for solutions that correspond to an harmonic wave propagating 
in the x direction without any attenuation or distorsion.  The second  condition 
expresses the fact that the transverse energy of the wave is finite and in fact 
confined, as we shall see later,in some neighbourhood of the coast.



Constant Depth

Variable Depth
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Normal modes in a channel of arbitrary cross section.

Mark D. Groves HAMILTONIAN LONG-WAVE THEORY
FOR WATER WAVES IN A CHANNEL 1994
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We would like to compare the spectrum of:

1. The operator derived from the expansion of the DN operator by 
Craig, Guyenne, Nicholls and Sulem:

2. The operator involving the PDO approach.

II. Spectral comparison of the two operators approaches to the DN operator 1. 
By Craig,Guyenne Nicholls Sulem and 2.The PDO approach.



By solving the generalized eigenvalue problem presented below
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Generalized Dispersive Curve.  PDO operator vs CGNS approach.
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Eigenmodes   PDO operator vs CGNS approach.
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 III.  Global Bifurcation in Stokes waves for the
Whitham-Boussinesq equations with Garcia- Aspeitia , Panayotaros

The existence of travelling waves can be setting  in a problem where the 
global Rabinowitz alternative can be applied. Garcia-Azpeitia using an 
appropiate operator for the Whitham-Boussinesq equations, proves that this 
operator has a global bifurcation in Stokes waves in an appropiate space, 
he use the fact that this operator is O(2) equivariant.



Thank you!


