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Two dimensional fluids
The setting:

e inviscid incompressible fluid flow (governed by the incompressible
Euler equations)
» irrotational flow
» with gravity and no surface tension
o fluid is considered in an infinitely wide domain and above a flat,
finite bottom at y = —h < 0
e free boundary (the interface with air)
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The Eulerian formulation

Fluid domain: Q(¢), free boundary T'(¢).
Velocity field u, pressure p, gravity g.
Euler equations in Q(t):

ur +u-Vu=Vp—gj
divu=0

curl u =0

u(0,2) = uo(x)

Boundary conditions on I'(¢):

O¢ +u - V is tangent to U I'(t) (kinematic)
p=po onI(t) (dynamic)
Assume the bottom is impermeable,

u-ijon{y:—h},
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Reduction to the boundary for irrotational flows
Velocity potential ¢ which satisfies

u= Ve, Ap=0 in Q)
Oy$» =0, ony=—h

As a consequence ¢ is uniquely determined by its trace on the
boundary

Y = 9lrw)
e Equations reduced to the boundary in Eulerian formulation in
(n,%), where n is the elevation and ¥ (t,z) = ¢(t,n(t, ))):
Om— Gy =0
1 1(VnVy+G 2

=0.

2 1+ |Vn?

where G is the Dirichlet to Neuman on the free surface.
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Previous work

e Local well-posedness (mixture of dimensions and models)

» Nalimov, Yosihara, Wu, Christodoulou-Lindblad, Lannes, Lindblad,

Coutand-Shkoller, Shatah-Zeng, Alazard-Burqg-Zuilly, Nguyen. . .

e Enhanced lifespan (co depth)
2d almost global: Wu, Hunter-I.-Tataru
2d global: Alazard-Delort, Ionescu-Pusateri, I.-Tataru, Wang
Other 2d models: 1.-Tataru, Ionescu-Pusateri
3d global: Wu, Germain-Masmoudi-Shatah,
Deng-Ionesu-Pausauder-Pusateri
e Enhanced lifespan (finite depth)

» 3d enhanced lifespan: Alvarez-Samaniego-Lannes

» 3d global: Wang

» 2d: Berti-Delort (periodic, gravity-capillary, a.e. )

vV vyVvVYyy

GOAL: Initiate study of long time dynamics in 2d nonperiodic case:
e Rigorously formulate problem in holomorphic coordinates
o Low regularity local well-posedness for large initial data
e Enhanced (cubic) lifespan bounds for small initial data
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Holomorphic coordinates

@ We use holomorphic coordinates

» Ovsjannikov, Dyachenko-Zakharov-Kuznetsov, Wu, Choi-Camassa,
Li-Hyman-Choi, Hunter-1.-Tataru, I.-Tataru, ...

e We have a conformal map defined as below

Y z(t,a, ) B
N
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Holomorphic coordinates

y 2(t, v, B) B

Properties of our conformal map:

o Key advantage: diagonalizes Dirichlet-to-Neumann map

@ The map z is chosen to be holomorphic in S fixing the bottom and
to satisfy the asymptotic condition z ~ « + i3 for |a] — o

@ The conformal map is then unique up to horizontal translation
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Holomorphic variables

e Given the conformal map z we define its trace on the top {8 = 0}
to be Z(t,a) = z(t, @, 0)
We then define the holomorphic function

W(t,a)=2Z(t,a)—«

Taking ¢ to be the velocity potential we define ¢ = ¢ o z and take
its harmonic conjugate to be 6

We then define the holomorphic function (call it holomorphic
velocity potential)

Q(t,a) = Y(t,a,0) + i6(t, o, 0)

We may then write the water wave equations as a system for the
holomorphic functions (W, Q).
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The functional framework

e If U is the trace of a holomorphic function u that satisfies the
boundary condition SU = 0 on the base {f = —1} then

—TpRU = SU

where Tj, = —itanh(hD).
@ We define the space H" to consist of distributions defined on R
modulo real constants so that

1015 = ITaRU 22 + ISU|72 < oo,

e With respect to the natural inner product we have the orthogonal
decomposition
H=9"an
where $ (resp. $%) is the space of (traces of) holomorphic (resp.
antiholomorphic) functions
@ We define the orthogonal projection onto holomorphic functions

Pn:H— "
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Water wave equations in holomorphic coords.

e P, - projector onto the space of holomorphic functions

Fully nonlinear equations for holomorphic variables (W = Z — o, Q):

Wi+ F(14+W,) =0

) Qaf*] _
Qi+ FQu —gTalW] + Py [ 22| =0,

where

, J=1+W,%

rop, [0

J

Conserved energy (Hamiltonian): L= (—7;;18 )% ~ (D )%
EW.Q) = g|WI3, +ILxQI%, +2(WWa, W)s,

Symmetries:
e Translations in o and ¢.
o Scaling (W (t,z),Q(t,x)) — (AN W (¢, \z), \"tQ(t, \x))
(corresponds to (g, h) — (Ag, Ah))
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Gauge freedom and fixing

e A disadvantage of the holomorphic coordinates is that our system
has a gauge freedom

(W(t,a),Qt, @) = (W(t, a+ao(t) +ao(t), QL a+ao(t)) +qo(t))

for real-valued functions «ag(t), qo(t).
» This corresponds to F — F + «(t) in the equation for W and a
similar choice involving ¢((t) for the projector in the equation for Q.
» This is seen in the fact that Pu involves the term 7 'Su
e To fix the gauge:
1. At the initial time we must make an arbitrary choice
2. At later times we fix the choice of ag and gg by requiring that both
F' and the projector in the second equation have limit 0 at —oco
e This is allowed because the arguments of P are either
holomorphic, antiholomorphic or in L? N L.
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The differentiated equations

Self-contained system in (W, Qs ): degenerate hyperbolic system with
double speed. Alternate quasilinear system for diagonal variables
(W, R) = (Wa, 122-):

o THI,
1+W
W:+b0W,o+ ——R,.=(1+W)M
ot +1+W (1+W)
gW —a
bR, =
R+ 0Re =177 <5

Physical parameters:
@ a is real (g + a is the normal derivative of the pressure)

a:=g(1+T*HRW + 23P[RR,),
@ b is real, and plays the role of an advection coefficient
b:=2R [R — P[Rl_/]]
Other parameters:

M =2RP[RY, — R.Y] Y :=W/(1+W).
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The Taylor stability condition

Normal derivative of the pressure:

d —
% —g4a, a=g1+T)RW +23P[RR,),

Taylor stability (necessary for well-posedness)

dp
— >0
dn>

Theorem (Lannes,HG-I-T)
Assume that the fluid stays away from the bottom,

SW > —hg > —h

Then
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R
Sobolev spaces: Main space:
1
Hy = Hn X H;,

Solutions:
(W,Q) € Hn, (W, R) € Hj,

High frequency scaling:
1
(W,R) € H}
Control norms:

_1 1
A= [[Wpee + [V 2o + g7 2 [[(D) > B| ooy oo
1 1
B := g2 |(D)> W lomo, + [[{D)Rllbmo,

o the inhomogeneous space bmo is given by the norm

| fllomon, = [l f<n-1llzee + | f>n—1llBMO,

where f = fop-1 + fop
e BMO is the usual space of functions of bounded mean oscillation.
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Low regularity local well-posedness:

Theorem

o The system is locally well-posed for all initial data (Wy, Qo) with
regularity
(W(Ja QO) € Hhv (W07R0) € Hfll
Further, the solutions can be continued as long as our control
parameter A(t) remains finite, and [ B(t)dt remains finite.

o This result is uniform with respect to our choice of parameters
g S hoas follows. If for a large parameter C' the initial data
satisfies

g~ I (Wo, Qo) I + g7 | (Wo, Ro)lla + (Wo,as Roa)ll < C,

then there exists some T'= T(C), independent on g,h so that the
solution exists on [—T,T) with similar bounds.
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A model system

e first order diagonal double speed (b) hyperbolic system written is
variables (w,r):

wy + Plbw,] + P [1 f‘w] —P [}fiﬂv_;“} e
Y (R

e (w,r) and the inhomogeneous terms (G, K) € H are holomorphic.
Quasilinear energy:

2 _
El(lg(w r) = (w,w),,, —(r,T Hral) = W), 4q + (L1, L)
Quasilinear weighted energy:
2
Ei}l)m(w,r) = (W, w) (g4 4y, + (L7, LT),,
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Energy estimates:

Let I be a time interval where A is bounded and B € L. Then in I
the following properties hold:

a) The system of equations is well posed in H, and satisfies the estimate

d

2 2
%El(m) (w,r) =2(G,w),4, — 2(LK,Lr) + OA(B)El(hz (w, ).
b) Assume in addition that w is a weight satisfying
lllze <A, lol, 4 <B, (3 +b0u)wlze < B
Then we also have
4 p@ —2(G LK, Lr) + OA(B)E2)
% w,lin(U)?T) =2 < 7w>(g+a)w + 2( ’ T> =+ A( ) lin ('U),T)
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The linearization at zero
@ The linearized system for (w,q) = (6W, Q) about zero is given by

W+ qo =0
{ —gTW] =
o The dispersion relation is then seen to be
72 = g¢tanh €
e Two branches 7 = £,/gw(§) where w(&) = ¢ tanh ¢ corresponding

to left-moving and right-moving waves
At high frequency the behavior is similar to the infinite depth case

&
O~ =

At low frequency we obtain the KdV like dispersion relation
1
w(§) ~ & — 653
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Nonlinear resonances and solitons

e The worst quadratic interactions of linear waves correspond to
three-wave resonances: solutions to the system

{ w(é1) Tw(&) tw(és) =0
§1+&+&=0

@ This can only occur when one of &1, &3, £3 vanishes.

@ The equation has a null structure that kills these interactions, so it
is reasonable to expect that small solutions will exist on
longer-than-quadratic timescales

e Small solitons arising from the KdV approximation

e For small localized data solitons emerge at quartic time scales
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|
Cubic lifespan bounds

Theorem
Our fully nonlinear system with small initial data (Wo, Qo),

gilhill‘(VV: Q)(O)HHh + gilu(W?R)(O)H}lh + H(WomRa)(O)HHh <e

Then the solution (W, Q) exists and satisfies similar bounds on a time
interval [~T,, T.] with T. 2 ¢~2. In addition, higher regularity also
propagates uniformly on the same scale, i.e. for solutions as above we

have
[OW, Bl ety S IOW, RY(O)lg + b’

whenever the right hand side is finite.

The regularity of the data is same as in the LWP result.
Proof idea: quasilinear modified energy method

Bounds for all higher norms propagate on same timescale.
Result is uniform in the infinite depth limit h — oco.
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Normal form for the finite depth water waves

The normal form variables are (W, Q):

{W =W + B"W, W] + 1C"[Q, Q] + B*[W, W] + :C“(Q, Q)]
Q= Q+AMW, Q] + AW, Q] + D[Q, W],

e The symbols have singularites at zero frequency-thus we cannot
implement the normal form directly

@ When we compute the normal form energies, the repeated
symmetrizations lead to cancelations of the singularities - this is
what we call a null structure. E.g.:

< W,BMW, W] >
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The normal form symbols

Q& Q) = J(€)*+ J()* + J(C)* = 2J(&)J () — 2 ()T (¢) — 2 ({)J (€),
J(€) = w(§)® = £ tanh

2inJ () (J(E+n) = J(E) + ()

A& ) = e, ’
h 2+ n)J(6)J(n)
B (E: )_ (§ 77) 9
iEn(€+n) (J(E+n) — J(E) — J(n))'

Ch (& m) =

Q& m)
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. 1 tanh(¢—7)
A (6777): 1 — o266 E—n
{n(1 = cothin) B"(&, =) + (1 — tanh &) C"(&, —n)}
1 1

Ba(fﬂ?) == 1— 62(’5_”) é— —n
{(7(6 = m)= (& +m) B'(€ —n) + (tanh &+ tanh ) C" (¢, ~n)}
e

_1 — e2(6—m) E—n
{76 =m)= (€ +m) C"(&, ~n) + €n (cothn+coth §) B (¢, ~n) }

“ B 1 tanh(§ —n)
D (5777)—_1_62(5_”) g_n

{601 coth ©) B (¢, —n) + (1 — tanh ) C" (¢, =) |
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Thank you




The modified energy method

Idea: Modify the energy rather than the equation in order to get cubic
energy estimates.

Step 1: Construct a cubic normal form energy
B} (W, Q) = (quadratic + cubic) (™12, + 132, ,)

Then p
ﬁE}(]F(I/V, Q) = quartic + higher

Here higher derivatives arise on the right, making it impossible to close.

Step 2: Switch E}, (W, Q) to diagonal variables EY (W, R).

Step 3: To account for the fact that the equation is quasilinear,
replace the leading order terms in E7, (W, R) with their natural
quasilinear counterparts to obtain a good cubic quasilinear energy
E™(W,R). Clue: look at the quasilinear energy for the linearized
equation.
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