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Two dimensional fluids
The setting:

inviscid incompressible fluid flow (governed by the incompressible
Euler equations)

I irrotational flow
I with gravity and no surface tension

fluid is considered in an infinitely wide domain and above a flat,
finite bottom at y = −h < 0
free boundary (the interface with air)

y

x

−h

Ω(t)

Γ(t)
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The Eulerian formulation
Fluid domain: Ω(t), free boundary Γ(t).
Velocity field u, pressure p, gravity g.
Euler equations in Ω(t):

ut + u · ∇u = ∇p− gj
div u = 0

curl u = 0

u(0, x) = u0(x)

Boundary conditions on Γ(t):{
∂t + u · ∇ is tangent to

⋃
Γ(t) (kinematic)

p = p0 on Γ(t) (dynamic)

Assume the bottom is impermeable,

u · j = 0 on
{
y = −h

}
,
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Reduction to the boundary for irrotational flows
Velocity potential φ which satisfies{

u = ∇φ, ∆φ = 0 in Ω(t)

∂yφ = 0, on y = −h

As a consequence φ is uniquely determined by its trace on the
boundary

ψ = φ|Γ(t)

Equations reduced to the boundary in Eulerian formulation in
(η, ψ), where η is the elevation and ψ(t, x) = φ(t, η(t, x))):

∂tη −G(η)ψ = 0

∂tψ + gη +
1

2
|∇ψ|2 − 1

2

(∇η∇ψ +G(η)ψ)2

1 + |∇η|2
= 0.

where G is the Dirichlet to Neuman on the free surface.
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Previous work
Local well-posedness (mixture of dimensions and models)

I Nalimov, Yosihara, Wu, Christodoulou-Lindblad, Lannes, Lindblad,
Coutand-Shkoller, Shatah-Zeng, Alazard-Burq-Zuilly, Nguyen. . .

Enhanced lifespan (∞ depth)
I 2d almost global: Wu, Hunter-I.-Tataru
I 2d global: Alazard-Delort, Ionescu-Pusateri, I.-Tataru, Wang
I Other 2d models: I.-Tataru, Ionescu-Pusateri
I 3d global: Wu, Germain-Masmoudi-Shatah,

Deng-Ionesu-Pausauder-Pusateri

Enhanced lifespan (finite depth)
I 3d enhanced lifespan: Alvarez-Samaniego-Lannes
I 3d global: Wang
I 2d: Berti-Delort (periodic, gravity-capillary, a.e. )

GOAL: Initiate study of long time dynamics in 2d nonperiodic case:

Rigorously formulate problem in holomorphic coordinates

Low regularity local well-posedness for large initial data

Enhanced (cubic) lifespan bounds for small initial data
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Holomorphic coordinates

We use holomorphic coordinates
I Ovsjannikov, Dyachenko-Zakharov-Kuznetsov, Wu, Choi-Camassa,

Li-Hyman-Choi, Hunter-I.-Tataru, I.-Tataru, . . .

We have a conformal map defined as below

y

x

−1
Ω(t)

β

α

−1
S

z(t, α, β)
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Holomorphic coordinates

y

x

−1

Ω(t)

β

α

−1

S

z(t, α, β)

Properties of our conformal map:

Key advantage: diagonalizes Dirichlet-to-Neumann map

The map z is chosen to be holomorphic in S fixing the bottom and
to satisfy the asymptotic condition z ≈ α+ iβ for |α| → ∞
The conformal map is then unique up to horizontal translation
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Holomorphic variables

Given the conformal map z we define its trace on the top {β = 0}
to be Z(t, α) = z(t, α, 0)

We then define the holomorphic function

W (t, α) = Z(t, α)− α

Taking φ to be the velocity potential we define ψ = φ ◦ z and take
its harmonic conjugate to be θ

We then define the holomorphic function (call it holomorphic
velocity potential)

Q(t, α) = ψ(t, α, 0) + iθ(t, α, 0)

We may then write the water wave equations as a system for the
holomorphic functions (W,Q).
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The functional framework

If U is the trace of a holomorphic function u that satisfies the
boundary condition =U = 0 on the base {β = −1} then

−Th<U = =U
where Th = −i tanh(hD).
We define the space Hh to consist of distributions defined on R
modulo real constants so that

‖U‖2Hh = ‖Th<U‖2L2 + ‖=U‖2L2 <∞,
With respect to the natural inner product we have the orthogonal
decomposition

H = Hh ⊕ Ha,

where Hh (resp. Ha) is the space of (traces of) holomorphic (resp.
antiholomorphic) functions
We define the orthogonal projection onto holomorphic functions

Ph : H→ Hh
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Water wave equations in holomorphic coords.

Ph - projector onto the space of holomorphic functions

Fully nonlinear equations for holomorphic variables (W = Z − α,Q):
Wt + F (1 +Wα) = 0

Qt + FQα − gTh[W ] + Ph

[
|Qα|2

J

]
= 0,

where

F = Ph

[
Qα − Q̄α

J

]
, J = |1 +Wα|2.

Conserved energy (Hamiltonian): L = (−T −1
h ∂α)

1
2 ≈ 〈D〉

1
2 .

E(W,Q) = g‖W‖2Hh + ‖LhQ‖2Hh + 2〈WWα,W 〉Hh
Symmetries:

Translations in α and t.
Scaling (W (t, x), Q(t, x))→ (λ−1W (t, λx), λ−1Q(t, λx))
(corresponds to (g, h)→ (λg, λh))
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Gauge freedom and fixing

A disadvantage of the holomorphic coordinates is that our system
has a gauge freedom

(W (t, α), Q(t, α)) 7→ (W (t, α+α0(t))+α0(t), Q(t, α+α0(t))+q0(t))

for real-valued functions α0(t), q0(t).
I This corresponds to F 7→ F + α′0(t) in the equation for W and a

similar choice involving q′0(t) for the projector in the equation for Q.
I This is seen in the fact that Pu involves the term T −1=u

To fix the gauge:

1. At the initial time we must make an arbitrary choice
2. At later times we fix the choice of α0 and q0 by requiring that both

F and the projector in the second equation have limit 0 at −∞
This is allowed because the arguments of P are either
holomorphic, antiholomorphic or in L2 ∩ L1.
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The differentiated equations
Self-contained system in (Wα, Qα): degenerate hyperbolic system with
double speed. Alternate quasilinear system for diagonal variables
(W, R) = (Wα,

Qα
1+Wα

):
Wt + bWα +

1 + W

1 + W̄
Rα = (1 + W)M

Rt + bRα = i
gW − a
1 + W

Physical parameters:

a is real (g + a is the normal derivative of the pressure)

a := g(1 + T 2)<W + 2=P[RR̄α],

b is real, and plays the role of an advection coefficient

b := 2<
[
R−P[RȲ ]

]
Other parameters:

M = 2<P[RȲα − R̄αY ] Y := W/(1 + W).
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The Taylor stability condition
Normal derivative of the pressure:

dp

dn
= g + a, a = g(1 + T 2)<W + 2=P[RR̄α],

Taylor stability (necessary for well-posedness)

dp

dn
> 0

Theorem (Lannes,HG-I-T)

Assume that the fluid stays away from the bottom,

=W ≥ −h0 > −h

Then
dp

dn
≥ g(h− h0)
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Sobolev spaces: Main space:

Hh = Hh × H
1
2
h

Solutions:
(W,Q) ∈ Hh, (W, R) ∈ H1

h

High frequency scaling:

(W, R) ∈ H
1
2
h

Control norms:

A := ‖W‖L∞ + ‖Y ‖L∞ + g−
1
2 ‖〈D〉

1
2R‖

L∞∩B0,∞
2

B := g
1
2 ‖〈D〉

1
2W‖bmoh + ‖〈D〉R‖bmoh

the inhomogeneous space bmo is given by the norm

‖f‖bmoh = ‖f<h−1‖L∞ + ‖f≥h−1‖BMO,

where f = f<h−1 + f≥h−1

BMO is the usual space of functions of bounded mean oscillation.
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Low regularity local well-posedness:

Theorem

The system is locally well-posed for all initial data (W0, Q0) with
regularity

(W0, Q0) ∈ Hh, (W0, R0) ∈ H1
h.

Further, the solutions can be continued as long as our control
parameter A(t) remains finite, and

∫
B(t)dt remains finite.

This result is uniform with respect to our choice of parameters
g . h as follows. If for a large parameter C the initial data
satisfies

g−1h−1‖(W0, Q0)‖H + g−1‖(W0, R0)‖H + ‖(W0,α, R0,α)‖H ≤ C,

then there exists some T = T (C), independent on g, h so that the
solution exists on [−T, T ] with similar bounds.
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A model system
• first order diagonal double speed (b) hyperbolic system written is
variables (w, r):

wt + P[bwα] + P

[
rα

1 + W̄

]
−P

[
RαT 2w

1 + W̄

]
= G

rt + P[brα]−P

[
(g + a)T [w]

1 + W

]
= K

• (w, r) and the inhomogeneous terms (G,K) ∈ H are holomorphic.
Quasilinear energy:

E
(2)
lin (w, r) = 〈w,w〉g+a −

〈
r, T −1[rα]

〉
= 〈w,w〉g+a + 〈Lr, Lr〉

Quasilinear weighted energy:

E
(2)
ω,lin(w, r) = 〈w,w〉(g+a)ω + 〈Lr, Lr〉ω
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Energy estimates:

Let I be a time interval where A is bounded and B ∈ L1. Then in I
the following properties hold:
a) The system of equations is well posed in H, and satisfies the estimate

d

dt
E

(2)
lin (w, r) = 2 〈G,w〉g+a − 2 〈LK,Lr〉+OA(B)E

(2)
lin (w, r).

b) Assume in addition that ω is a weight satisfying

‖ω‖L∞ ≤ A, ‖ω‖
bmo

1
2
≤ B, ‖(∂t + b∂α)ω‖L∞ ≤ B

Then we also have

d

dt
E

(2)
ω,lin(w, r) = 2 〈G,w〉(g+a)ω + 2〈LK,Lr〉+OA(B)E

(2)
lin (w, r)
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The linearization at zero

The linearized system for (w, q) = (δW, δQ) about zero is given by{
wt + qα = 0

qt − gT [W ] = 0,

The dispersion relation is then seen to be

τ2 = gξ tanh ξ

Two branches τ = ±√gω(ξ) where ω(ξ) = ξ
√

tanh ξ
ξ corresponding

to left-moving and right-moving waves
At high frequency the behavior is similar to the infinite depth case

ω(ξ) ∼ ξ√
|ξ|

At low frequency we obtain the KdV like dispersion relation

ω(ξ) ∼ ξ − 1

6
ξ3
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τ2 − ξ tanh ξ = 0

ξ

τ

Figure : Dispersion relation
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Nonlinear resonances and solitons

The worst quadratic interactions of linear waves correspond to
three-wave resonances: solutions to the system{

ω(ξ1)± ω(ξ2)± ω(ξ3) = 0

ξ1 + ξ2 + ξ3 = 0

This can only occur when one of ξ1, ξ2, ξ3 vanishes.

The equation has a null structure that kills these interactions, so it
is reasonable to expect that small solutions will exist on
longer-than-quadratic timescales

Small solitons arising from the KdV approximation

For small localized data solitons emerge at quartic time scales
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Cubic lifespan bounds

Theorem

Our fully nonlinear system with small initial data (W0, Q0),

g−1h−1‖(W,Q)(0)‖Hh + g−1‖(W, R)(0)‖Hh + ‖(Wα, Rα)(0)‖Hh ≤ ε.

Then the solution (W,Q) exists and satisfies similar bounds on a time
interval [−Tε, Tε] with Tε & ε−2. In addition, higher regularity also
propagates uniformly on the same scale, i.e. for solutions as above we
have

‖(W, R)‖C([−Tε,Tε];Hkh) . ‖(W, R)(0)‖Hkh + εh1−k

whenever the right hand side is finite.

The regularity of the data is same as in the LWP result.
Proof idea: quasilinear modified energy method
Bounds for all higher norms propagate on same timescale.
Result is uniform in the infinite depth limit h→∞.
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Normal form for the finite depth water waves

The normal form variables are (W̃ , Q̃):{
W̃ = W +Bh[W,W ] + 1

gC
h[Q,Q] +Ba[W, W̄ ] + 1

gC
a[Q, Q̄]

Q̃ = Q+Ah[W,Q] +Aa[W, Q̄] +Da[Q, W̄ ],

The symbols have singularites at zero frequency-thus we cannot
implement the normal form directly

When we compute the normal form energies, the repeated
symmetrizations lead to cancelations of the singularities - this is
what we call a null structure. E.g.:

< W,Bh[W,W ] >
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The normal form symbols

Ω(ξ, η, ζ) = J(ξ)2 + J(η)2 + J(ζ)2 − 2J(ξ)J(η)− 2J(η)J(ζ)− 2J(ζ)J(ξ),

J(ξ) = ω(ξ)2 = ξ tanh ξ

Ah(ξ, η) =
2iηJ(ξ) (J(ξ + η)− J(ξ) + J(η))

Ω(ξ, η)
,

Bh(ξ, η) =
2i(ξ + η)J(ξ)J(η)

Ω(ξ, η)
,

Ch(ξ, η) =
iξη(ξ + η) (J(ξ + η)− J(ξ)− J(η))

Ω(ξ, η)
.
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Aa(ξ, η) =
1

1− e2(ξ−η)

tanh(ξ − η)

ξ − η{
η (1− coth η)Bh(ξ,−η) + (1− tanh ξ)Ch(ξ,−η)

}
Ba(ξ, η) = − 1

1− e2(ξ−η)

1

ξ − η{
(J(ξ − η)−(ξ + η))Bh(ξ,−η) + (tanh ξ+tanh η)Ch(ξ,−η)

}
Ca(ξ, η) = − 1

1− e2(ξ−η)

1

ξ − η{
(J(ξ − η)−(ξ + η))Ch(ξ,−η) + ξη (coth η+coth ξ)Bh(ξ,−η)

}
Da(ξ, η) = − 1

1− e2(ξ−η)

tanh(ξ − η)

ξ − η{
ξ(1− coth ξ)Bh(ξ,−η) + (1− tanh η)Ch(ξ,−η)

}
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Thank you
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The modified energy method
Idea: Modify the energy rather than the equation in order to get cubic
energy estimates.

Step 1: Construct a cubic normal form energy

EnNF (W,Q) = (quadratic+ cubic)(‖W̃ (n)‖2L2 + ‖Q̃(n)‖2
Ḣ

1
2
)

Then
d

dt
EnNF (W,Q) = quartic+ higher

Here higher derivatives arise on the right, making it impossible to close.

Step 2: Switch EnNF (W,Q) to diagonal variables EnNF (W, R).

Step 3: To account for the fact that the equation is quasilinear,
replace the leading order terms in EnNF (W, R) with their natural
quasilinear counterparts to obtain a good cubic quasilinear energy
En(W, R). Clue: look at the quasilinear energy for the linearized
equation.
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