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• inviscid, incompressible, irrotational

• gravity

• surface tension

• steady
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NON SYMMETRIC WAVES....in two and three

dimensions

• Periodic waves

• Solitary waves

• Generalised Solitary waves

flexural waves (thursday.....).

stability
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PART 1

TWO-DIMENSIONAL FLOWS
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FORMULATION

GRAVITY-CAPILLARY WAVES

φxx + φyy = 0

φy = φxζx on y = ζ(x)

1

2
(φ2
x + φ2

y) + gy−T
ρ
κ = B on y = ζ(x)

φy = 0 on y = −h

FLEXURAL WAVES

D

ρ
(∂2
s κ+

1

2
κ3)

T = surface tension, D = flexural rigidity

κ =
ζxx

(1 + ζ2
x)3/2
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PERIODIC and SOLITARY waves

Gravity waves
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Article · June 2012

Source: arXiv

Abstract

In this report, fundamental educational concepts of linear and non-linear

equations and solutions of nonlinear equations from the book High-Temperature

Superconductivity: The Nonlinear Mechanism and Tunneling Measurements (Kluwer

Academic Publishers, Dordrecht, 2002, pages 101-142) is given. There are a few

ways to classify solitons. For example, there are topological and

nontopological solitons. Independently of the topological nature of solitons,

all solitons can…
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Figure 1: Sketch of (a) a periodic linear wave, and (b) a

solitary wave. 
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NUMERICAL METHODS

boundary integral equation methods, series trun-

cation methods or ANY OTHER METHODS....

1. Iterations by using Newton’s method

2. Continuation methods

3. INITIAL GUESS: bifurcations, symmetry

breaking...
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Gravity-capillary solitary waves
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Dimensioless variables: ( Tρg)1/2 (reference length),

( T
ρg3)1/2 (reference time)

amplitude: A

phase velocity: c

energy: E

E =
1

2

∫ ∞
−∞

∫ η

−∞
(φ2
x + φ2

y)dydx+
1

2

∫ ∞
−∞

η2dx

+
∫ ∞
−∞

(
√

1 + η2
x − 1)dx

Boundary integral equation, Newton iterations,

continuation
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Gravity capillary solitary waves

infinite depth
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Asymmetric solitary waves 5
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Figure 2. A branch arising from an asymmetric wave with the initial guess being composed by a
one-hump elevation wave and a depression wave propagating at c = 1.4. (a) Speed-energy curves
for asymmetric waves (solid line) and symmetric waves (dashed line). The sharp turning point
and the symmetry-breaking bifurcation are shown in details. (b) Profiles of the elevation wave
(top) labeled by A in Figure 1(a) and the depression wave (bottom) labeled by B in Figure 1(b).
(c) Typical profiles of asymmetric solitary waves close to the bifurcation points, corresponding
to 3© (top) and 4© (bottom). (d) Typical profiles of asymmetric solitary waves close to the
turning point, corresponding to 5© (top) and 6© (bottom). (e) Symmetric waves according to
the bifurcation points 1© (top) and 2© (bottom).
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Asymmetric solitary waves 7
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Figure 4. A branch arising from an asymmetric wave with the initial guess being composed by
a one-hump and a multi-hump elevation solitary waves propagating at c = 1.35. (a) Speed-en-
ergy curves for asymmetric waves (solid line) and symmetric waves (dashed line). The symme-
try-breaking bifurcation is shown in details. (b) The profiles from top to bottom correspond to
the points labeled by F and E in Figure 1(a) respectively. (c) Typical profiles of asymmetric
solitary waves at the turning points C© (top) and D© (bottom). (d) Typical profiles of asymmetric
solitary waves at turning points far away from the bifurcation point, corresponding to E© (top)
with η(P ) = 0.1342 and F© (bottom) with η(Q) = 0.1618. (e) Symmetric waves corresponding
to the bifurcation points A© (bottom) and B© (top).
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HYDROELASTIC WAVES

Tao Gao, Zhan Wang
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GENERALISED SOLITARY WAVES
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Figure 2.

Profiles of the waves for A=−0.05, B=0.24 and (a) λ=13, (b) λ=26, (c) λ=34
and (d) λ=68. The corresponding values of the Froude number are (a) 0.999,
(b) 1.011, (c) 1.014 and (d) 1.020.

Figure 3.

Typical free-surface profiles of generalized solitary waves with (a) F= 1.021,
B=0.239, λ=101 and (b) F=1.023, B=0.239 and λ=102. The waves (a, b) end
with a trough and a crest, respectively. Only half of the waves are shown.

We fix the value of A (here A=−0.055) and compute the branch of symmetric

solutions by using the numerical scheme described in §2. The results in the

F –B plane are shown in figure 4 (solid curve). Since there are many

turning points on the bifurcation curve, we need to use in addition to the

code of §2 a variant in which we fix F and λ and take 

 as the unknowns. The solid curve of figure 4 was

then obtained by using alternatively both codes and continuation (i.e. using

a previously computed solution as an initial guess to compute a new solution

for slightly different values of the parameters). By performing the asymmetric

Jacobian test, we located two bifurcation points (marked as (1) and (2) in

figure 4) from which new asymmetric branches emanate. Typical wave

profiles are shown in figure 5. As can be seen from (1†), (2†), (1‡) and (2‡),

there are asymmetries in the middle of the profile while the ripples in the far

Download figure | Open in new tab | Download powerpoint

Download figure | Open in new tab | Download powerpoint

2

( , , … , , B, )a0 a1 aN B
∼

0

0

0
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We then continued to search for more asymmetric generalized solitary

waves. We first used the solution (2) in figure 4 and constructed by

continuation a branch of symmetric solutions for B=0.26 and λ=102. This

branch is shown in the F –A plane of figure 6. Next we chose a point on the

curve of figure 6 (here we chose the point (d)) and constructed a family of

symmetric waves by fixing A=−0.0935 and λ=102. It is shown by the solid

curve in the F –B plane of figure 7. As we did previously in figure 4, we

perform the asymmetric Jacobian test. This enabled us to identify a

bifurcation point (the point (3)) from which a branch of asymmetric waves

emanated (see dashed curve in figure 7). Typical wave profiles are shown

in figure 8. It turns out that the far field is deformed by a train of Wilton-

ripple-like tails in (3†) instead of simple ripples of constant amplitude.

Generalized solitary waves with Wilton-ripple-like trains were first found by

Wang et al. [16] for interfacial waves under an elastic sheet. For the

classical gravity–capillary waves, such kind of solutions had not been found

before to our knowledge.

Figure 6.

A branch of symmetric waves plotted in the F –A plane when we fix B=0.26
and λ=102.

Figure 7.

A family of symmetric solutions plotted in the F –B plane when A= −0.0935
and λ=102. This branch emanates from the point (d) of figure 6. A symmetry-
breaking point is found at F=1.124, B=0.256 and marked as (3) in the graph.
The branch of asymmetric waves is shown by the dash-dotted curve. The

2

2

Download figure | Open in new tab | Download powerpoint

2

Download figure | Open in new tab | Download powerpoint

2

0

0
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zoom-in figure is used to differentiate the bifurcation point (3) and the
intersection point.

Figure 8.

Wave profile (3) for the point spotted in figure 7. (3†) is a typical profile of
asymmetric generalized solitary waves which bifurcate from (3) and (3‡) is
the blow-up graph of (3†). The profiles are plotted in the physical plane, and
only the main profiles are shown.

Our aim in this paper was to demonstrate the existence of branches of

asymmetric generalized solitary waves. As part of our search we found

some new symmetric waves. We shall conclude this section by presenting

some typical profiles. These symmetric results supplement those obtained in

[8]. First we show in figure 9 wave profiles corresponding to the points (a–e)

of figure 6. At one end of the solution branch, multi-hump solutions have

been found as presented in figure 9a. At the other end, we observed a new

kind of generalized solitary wave with a large and long ripple in the middle.

We followed to use this solution (e) as an initial guess to seek more new

solutions. The resulting profiles are presented in figure 10 which show that

the large and long central ripple can evolve multiple ripples. It is noted that

there is a plethora of multi-hump generalized solitary gravity–capillary waves

as claimed in [8,17].

Download figure | Open in new tab | Download powerpoint

0

Wang Z., Parau E.I. , Milewski P.A. and Vdb

(2014) Proc. Roy. Soc. A 470
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Figure 5. Figures (1) and (2) are the wave profiles corresponding to the points (1) and (2) of figure 4. Figures (1†, 1‡)
and (2†, 2‡) are typical wave profiles of asymmetric generalised solitary waves taken respectively on the branches
bifurcating from the points (1) and (2) of figure 4. The profiles of figures (1†) and (2†) correspond to points close
to the bifurcation points (1) and (2). The horizontal dashed lines illustrate clearly the asymmetry. The profiles of figures
(1‡) and (2‡) correspond to the points further away from the bifurcation points. All the profiles are plotted in the physical
plane, and only the central parts are shown.

4 (solid curve). Since there are many turning points on the bifurcation curve, we need to use in
addition to the code of §2 a variant in which we fix F and λ and take (a0, a1, ..., aN , B, B̃0) as
the unknowns. The solid curve of figure 4 was then obtained by using alternatively both codes
and continuation (i.e. using a previously computed solution as an initial guess to compute a new
solution for slightly different values of the parameters). By performing the asymmetric Jacobian test,
we located two bifurcation points (marked as (1) and (2) in figure 4) from which new asymmetric
branches emanate. Typical wave profiles are shown in figure 5. As can be seen from (1†), (2†),
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THREE-DIMENSIONAL FLOWS

Use Green’s theorem instead of Cauchy inte-

gral equation formula.

Emilian Parau, Mark Cooker

Olga Trichtchenko
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NON-SYMMETRIC 3D WAVES

Model: Akers and Milewski (2009)

ut +

√
2

2
ux−

√
2

4
H[u− uxx− 2uyy] + α(u2)x = 0

Zhan Wang
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Non-symmetric PERIODIC gravity-capillary waves

Tao Gao and Zhan Wang

Zufiria (1987)

Shimizu ans Shoji (2012)
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Symmetric waves
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Non-symmetric waves
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Non-symmetric waves
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Non-symmetric waves
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Non-symmetric waves
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16 T. Gao, Z. Wang and J. -M. Vanden-Broeck
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Figure 16. Non-symmetric waves in water of finite depth for Q = 3 where (1) p = 1.2,
q = 0.3274, (2) p = 1.2, q = 0.2218, (3) p = 1.2, q = 0.2711, (4) p = 1.2, q = 0.1861, (5)
p = 1, q = 0.2038, (6) p = 1.41. q = 0.1422.
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Figure 17. Branches of non-symmetric solutions for p = 3.7560 and Q = ∞, 3, 2.6, 2.55, 2.53,
2.525 respectively (from outside to inside).
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Conclusions

New non-symmetric gravity-capillary waves for

the Euler’s equations in 2D (solitary waves)

New non-symmetric flexural waves for the Eu-

ler’s equations in 2D (solitary waves)

New non-symmetric gravity-capillary waves for

a model in 3D (solitary waves)

New non-symmetric generalised solitary waves

in 2D

New non-symmetric periodic gravity-capillary

waves in 2D
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