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Outline

I Cauchon diagrams, Cauchon matrices, and
the Cauchon algorithm;

I lacunary sequences and rank determination;

I the Cauchon algorithm, descending rank
conditions, and bidiagonal factorization.
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Cauchon Diagrams and Cauchon Matrices

Cauchon Diagram
An n-by-m Cauchon diagram C is an n-by-m grid consisting of n ·m
squares colored black and white, where each black square has the
property that either every square to its left (in the same row) or every
square above it (in the same column) is black.

Examples of a Cauchon and a non-Cauchon diagrams
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We denote by Cn,m the set of the n-by-m Cauchon diagrams. We fix
positions in a Cauchon diagram in the following way: For C ∈ Cn,m
and i ∈ {1, . . . ,n} , j ∈ {1, . . . ,m} , (i , j) ∈ C if the square in row i and
column j is black.

Cauchon Matrix
Let A = (aij) ∈ Rn,m and let C ∈ Cn,m. We say that A is a Cauchon
matrix associated with the Cauchon diagram C if for all (i , j),
i ∈ {1, . . . ,n} , j ∈ {1, . . . ,m}, we have aij = 0 if and only if (i , j) ∈ C.
If A is a Cauchon matrix associated with an unspecified Cauchon
diagram, we just say that A is a Cauchon matrix.

[Goodearl, Launois, and Lenagan, 2011]
There is a parametrization of the totally nonnegative cells by using
the Cauchon diagrams. In fact, there is a one to one correspondence
between these diagrams and the totally nonnegative cells.
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The Cauchon Algorithm

Also called deleting derivations algorithm, Cauchon reduction
algorithm.
The Cauchon algorithm was originally developed by G. Cauchon,
while studying quantum matrices [Cauchon, 2003].

Notations
We denote by ≤ the lexicographic, on {1, . . . ,n} × {1, . . . ,m}, i.e.,

(g,h) ≤ (i , j) :⇔ (g < i) or (g = i and h ≤ j),

Set E◦ := {1, . . . ,n} × {1, . . . ,m} \ {(1,1)}, E := E◦ ∪ {(n + 1,2)}.
Let (s, t) ∈ E◦ . Then
(s, t)+ := min {(i , j) ∈ E | (s, t) ≤ (i , j), (s, t) 6= (i , j)}.
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The Cauchon Algorithm, [Goodearl, Launois, and Lenagan, 2011]

Let A ∈ Rn,m. As r runs in decreasing order over the set E with
respect to the lexicographical order, we define matrices
A(r) = (a(r)

ij ) ∈ Rn,m as follows.

1. Set A(n+1,2) := A.
2. For r = (s, t) ∈ E◦ define the matrix A(r) = (a(r)

ij ) as follows.

(a) If a(r+)
st = 0 then put A(r) := A(r+).

(b) If a(r+)
st 6= 0 then put

a(r)
ij :=

 a(r+)
ij −

a(r+)
it a(r+)

sj

a(r+)
st

for i < s and j < t ,

a(r+)
ij otherwise.

3. Set Ã := A(1,2); Ã is called the matrix obtained from A (by the
Cauchon algorithm).
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A(r+) =



j t

i a(r+)
ij a(r+)

it

s a(r+)
sj a(r+)

st


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Example 1

Example 1
Let

A =


6 3 3 1
3 2 2 1
3 2 2 1
1 1 1 1

 .
Then by application of the Cauchon algorithm to A we obtain

A(4,4) =


5 2 2 1
2 1 1 1
2 1 1 1
1 1 1 1

 , A(4,3) =


3 0 2 1
1 0 1 1
1 0 1 1
1 1 1 1

 = A(4,2) = A(4,1)
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Example 1 Cont.

A(3,4) =


2 0 1 1
0 0 0 1
1 0 1 1
1 1 1 1

 , A(3,3) =


1 0 1 1
0 0 0 1
1 0 1 1
1 1 1 1

 = A(3,2) = A(3,1),

A(3,1) = A(2,4) = A(2,3) = A(2,2) = A(2,1) = A(1,4) = A(1,3) = A(1,2) = Ã.
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Condensed Form of the Cauchon Algorithm

The condensed form of the Cauchon algorithm reduces the number
of required arithmetic operations from O(n4) to O(n3).
This is accomplished by relating the entries of A(k,2) to the entries of
A(k+1,2), k = 2, . . . ,n.

Condensed form of Cauchon Algrithm,
[Adm and Garloff, 2014]
Let A ∈ Rn,m. Set A(n) := A.
For k = n − 1, . . . , 1 define A(k) = (a(k)

ij ) ∈ Rn,m as follows:
For i = 1, . . . , k ,
for j = 1, . . . ,m − 1
set uj := min

{
h ∈ {j + 1, . . . ,m} |a(k+1)

kh 6= 0
}

(we set uj :=∞ if this set is
empty)

a(k)
ij :=

 a(k+1)
ij −

a(k+1)
k+1,j a

(k+1)
iuj

a(k+1)
k+1,uj

if uj <∞,

a(k+1)
ij if uj =∞,

for i = k + 1, . . . , n, j = 1, . . . ,m, and i = 1, . . . , k , j = m a(k)
ij := a(k+1)

ij . Put
Â := A(1).Mohammad Adm | A Novel Method for Determining the Rank of a Matrix UofK, UofR, PPU July 8, 2017
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A(k+1) =



j uj

i a(k+1)
ij · · · a(k+1)

iuj

k+1 a(k+1)
k+1,j 0 · · · 0 a(k+1)

k+1,uj
6= 0


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Example 2

Example 2
Let

A =


6 3 3 1
3 2 2 1
3 2 2 1
1 1 1 1

 .
Then by application of the condensed form of the Cauchon algorithm
to A we obtain

A(3) =


3 0 2 1
1 0 1 1
1 0 1 1
1 1 1 1

 , A(2) =


1 0 1 1
0 0 0 1
1 0 1 1
1 1 1 1

 = A(1) = Ã.
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Lacunary Sequences

Lacunary sequence, [Launois and Lenagan, 2014]
Let C ∈ Cn,m. We say that a sequence

γ := ((ik , jk ), k = 0,1, . . . ,p)

which is strictly increasing in both arguments is a lacunary sequence
with respect to C if the following conditions hold:

1. (ik , jk ) /∈ C, k = 1, . . . ,p;
2. (i , j) ∈ C for ip < i ≤ n and jp < j ≤ m.
3. Let s ∈ {0, . . . ,p − 1}. Then (i , j) ∈ C if

either for all (i, j), is < i < is+1 and js < j ,
or for all (i, j), is < i < is+1 and j0 ≤ j < js+1

and
either for all (i, j), is < i and js < j < js+1

or for all (i, j), i < is+1, and js < j < js+1.

Mohammad Adm | A Novel Method for Determining the Rank of a Matrix UofK, UofR, PPU July 8, 2017



14

Condition 3 in the definition of the lacunary se-
quence
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[Launois and Lenagan, 2014, Proposition 4.1],
[Adm and Garloff, 2016, Proposition 4.11]
Let A ∈ Rn,m and C ∈ Cn,m. For each position in C fix a lacunary
sequence γ = ((i0, j0), (i1, j1), . . . , (it , jt)) with respect to C starting at
this position. Assume that for all (i0, j0), we have

0 = det A[i0, i1, . . . , it |j0, j1, . . . , jt ] if and only if (i0, j0) ∈ C.

Then

det A[i0, i1, . . . , it |j0, j1, . . . , jt ] = ãi0,j0 · ãi1,j1 · · · ãit ,jt (1)

holds for all lacunary sequences γ.

Proposition, [AAAFG, 2017]
Let A ∈ Rn,m be such that Ã is a Cauchon matrix and let γ be a
lacunary sequence. Then γ allows the representation (1).
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Rank Determination

Procedure, [AAAFG, 2017]
Let A ∈ Rn,m be a Cauchon matrix. Construct the sequence

γ = ((ip, jp), . . . , (i0, j0)) (2)

as follows:
I Put (i−1, j−1) := (n + 1,m + 1).
I For k = 0,1, . . ., define

M := {(i , j) | 1 ≤ i < ik−1, 1 ≤ j < jk−1, aij 6= 0} .

If M = φ, put p := k − 1. Otherwise, put (ik , jk ) := max M, where
the maximum is taken with respect to the lexicographical order.

Lemma, [AAAFG, 2017]
The sequence that is obtained by the Procedure is a lacunary
sequence with respect to CA.
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Theorem, [AAAFG, 2017]
Let A ∈ Rn,m be such that Ã is a Cauchon matrix. Then
rankA = p + 1, where p is the length of the sequence which is
obtained by application of the Procedure to Ã.

Theorem, [AAAFG, 2017]
Let A ∈ Rn,m be such that Ã is a Cauchon matrix. Then for
i = 1, . . . ,n and 0 ≤ l ≤ n − i , the rows i , i + 1, . . . , i + l of A are
linearly independent if and only if application of the Procedure to
Ã[i , . . . , i + l |1, . . . ,m] results in a sequence of length l .

Corollary, [AAAFG, 2017]
Let A ∈ Rn,n be such that Ã is a Cauchon matrix. Then A is
nonsingular if and only if ãii 6= 0 for all i = 1,2, . . . ,n.
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Example 3

Example 3
Let

A =


6 3 3 1
3 2 2 1
3 2 2 1
1 1 1 1

 .
Then by application of the condensed form of the Cauchon algorithm
to A we obtain

Ã =


1 0 1 1
0 0 0 1
1 0 1 1
1 1 1 1

 .
Hence rankA = 3 and the rows 2 and 3 are linearly dependent while
3 and 4 are linearly independent.
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SEB Factorization

Definition
Let A ∈ Rn,n. Then we say that A has a successively ordered
elementary factorization (SEB) if A can be written as

A =

n−1∏
k=1

k+1∏
j=n

Lj(ljk )

D

 1∏
k=n−1

n∏
j=k+1

Uj(ukj)

 , (3)

where Li(s) = I + sEi,i−1, Uj(t) = I + tEj−1,j , 2 ≤ i , j ≤ n, and D is a
diagonal matrix.
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Descending Rank Conditions

Definition, [Johnson, Olesky, and van den Driessche]
Let A ∈ Rn,n. Then A satisfies the column descending rank condition
if for all l with 1 ≤ l ≤ n − 1, for all z with 0 ≤ z ≤ l − 1, and for all p
satisfying l − z ≤ p ≤ n − z − 1,

rankA[p + 1, . . . ,p + z + 1|1, . . . , l] ≤ rankA[p, . . . ,p + z|1, . . . , l].

Similarly, A satisfies the row descending rank condition if with the
indices as above

rankA[1, . . . , l |p + 1, . . . ,p + z + 1] ≤ rankA[1, . . . , l |p, . . . ,p + z].

A satisfies the descending rank conditions if A satisfies both the row
and column descending rank conditions.
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Theorem, [AAAFG, 2017]
Let A ∈ Rn,n and B := PAP. If A satisfies the descending rank
conditions, then the following statements hold:

(i) If b̃ij = 0 for some i ≥ j , then b̃it = 0 for all t < j ;

(ii) if b̃ij = 0 for some i ≤ j , then b̃tj = 0 for all t < i ;

(iii) B̃ is a Cauchon matrix.

Theorem, [AAAFG, 2017]
Let A ∈ Rn,n and B := PAP. If B satisfies (i) and (ii) in the above
Theorem, then A satisfies the descending rank conditions.
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Theorem, [AAAFG, 2017]
Let A ∈ Rn,n and B := PAT P. Then the following statements are
equivalent:
(a) A satisfies the descending rank conditions.
(b) B satisfies (i) and (ii) in the above Theorem.
(c) A has an SEB factorization and ljk and ukj , k = 1, . . . ,n − 1,

j = k + 1, . . . ,n, and dii , i = 1, . . . ,n are given by
(a) ln1 = b̃n1

b̃n2
, ln−1,1 = b̃n2

b̃n3
, . . ., l21 =

b̃n,n−1

b̃nn
,

ln2 =
b̃n−1,1

b̃n−1,2
, ln−1,2 =

b̃n−1,2

b̃n−1,3
, . . ., l3,2 =

b̃n−1,n−2

b̃n−1,n−1
, . . .,

ln,n = b̃21
b̃22

;

(b) dii = b̃n−i,n−i , i = 1, . . . , n;
(c) un−1,n = b̃12

b̃22
,

un−2,n−1 = b̃13
b̃23

, un−2,n = b̃23
b̃33

, . . .,

u12 =
b̃1,n

b̃2,n
, u13 =

b̃2,n

b̃3,n
, . . ., u1n =

b̃n−1,n

b̃n,n
,

with the convention 0
0 := 0.
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The End
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