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Bendixson

Hermitian part of A ∈ C
n×n:

H(A) =
A+ A∗

2

Eigenvalues of H(A):

δ1(A) ≥ δ2(A) ≥ · · · ≥ δn(A)

For every eigenvalue λ ∈ σ(A),

δn(A) ≤ Reλ ≤ δ1(A)
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Numerical range

◮ Thus σ(A) lies in

{(s + i t) : s, t ∈ R with s ≤ δ1(A)}
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The envelope

Numerical range

◮ Thus σ(A) lies in

{

e−i 0(s + i t) : s, t ∈ R with s ≤ δ1(e
i 0A)

}
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The envelope

Numerical range

◮ Thus σ(A) lies in (∀θ ∈ [0, 2π))

{

e−i θ(s + i t) : s, t ∈ R with s ≤ δ1(e
i θA)

}
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Numerical range

◮ Thus σ(A) lies in the intersection of all these half-planes:

⋂

θ∈[0,2π]

{

e−i θ(s + i t) : s, t ∈ R with s ≤ δ1(e
i θA)

}
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The envelope

Numerical range

◮ Thus σ(A) lies in the intersection of all these half-planes:

⋂

θ∈[0,2π]

{

e−i θ(s + i t) : s, t ∈ R with s ≤ δ1(e
i θA)

}

◮ This infinite intersection of half-planes coincides with the
numerical range (field of values) of A:

F (A) = {v∗Av ∈ C : v ∈ C
n with v∗v = 1}
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The envelope

Numerical range

◮ Thus σ(A) lies in the intersection of all these half-planes:

⋂

θ∈[0,2π]

{

e−i θ(s + i t) : s, t ∈ R with s ≤ δ1(e
i θA)

}

◮ This infinite intersection of half-planes coincides with the
numerical range (field of values) of A:

F (A) = {v∗Av ∈ C : v ∈ C
n with v∗v = 1}

◮ In fact, this is Johnson’s algorithm for computing and plotting
the boundary points of F (A).
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The numerical range of a 4× 4 Toeplitz matrix.
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Preview

◮ Improve upon the above spectrum localizations results.
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Classical
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The envelope

Preview

◮ Improve upon the above spectrum localizations results.

◮ Replace the tangent lines by cubic curves.
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The envelope

Preview

◮ Improve upon the above spectrum localizations results.

◮ Replace the tangent lines by cubic curves.

◮ The cubic curves are obtained by an inequality that all
eigenvalues of A must satisfy.
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Classical
Cubic curve

The envelope

Preview

◮ Improve upon the above spectrum localizations results.

◮ Replace the tangent lines by cubic curves.

◮ The cubic curves are obtained by an inequality that all
eigenvalues of A must satisfy.

◮ Replace infinite intersection of half-planes by an infinite
intersection of regions in the complex plane (defined by the
above cubic curves).
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Classical
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The envelope

Preview

◮ Improve upon the above spectrum localizations results.

◮ Replace the tangent lines by cubic curves.

◮ The cubic curves are obtained by an inequality that all
eigenvalues of A must satisfy.

◮ Replace infinite intersection of half-planes by an infinite
intersection of regions in the complex plane (defined by the
above cubic curves).

◮ The outcome is a localization region for the spectrum called
the envelope of A.
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The envelope

Preview

◮ Improve upon the above spectrum localizations results.

◮ Replace the tangent lines by cubic curves.

◮ The cubic curves are obtained by an inequality that all
eigenvalues of A must satisfy.

◮ Replace infinite intersection of half-planes by an infinite
intersection of regions in the complex plane (defined by the
above cubic curves).

◮ The outcome is a localization region for the spectrum called
the envelope of A.

◮ The envelope is contained in the numerical range and can be
quite smaller.
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The cubic curve that bounds the spectrum of A ∈ C
n×n

◮ y1 ∈ C
n is a unit eigenvector of H(A) corresponding to δ1(A).
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Cubic curve

The envelope

The cubic curve that bounds the spectrum of A ∈ C
n×n

◮ y1 ∈ C
n is a unit eigenvector of H(A) corresponding to δ1(A).

◮ Skew-hermitian part of A: S(A) =
A− A∗

2
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The envelope

The cubic curve that bounds the spectrum of A ∈ C
n×n

◮ y1 ∈ C
n is a unit eigenvector of H(A) corresponding to δ1(A).

◮ Skew-hermitian part of A: S(A) =
A− A∗

2
◮ Define two quantities:

v(A) = ‖S(A)y1‖
2
2, u(A) = Im(y∗1S(A)y1)

Michael Tsatsomeros Washington State University Envelope: Localization for the Spectrum of a Matrix



Classical
Cubic curve

The envelope

The cubic curve that bounds the spectrum of A ∈ C
n×n

◮ y1 ∈ C
n is a unit eigenvector of H(A) corresponding to δ1(A).

◮ Skew-hermitian part of A: S(A) =
A− A∗

2
◮ Define two quantities:

v(A) = ‖S(A)y1‖
2
2, u(A) = Im(y∗1S(A)y1)

◮ 0 ≤ v(A)− u(A)2 is a measure of how close δ1(A) + iu(A) is
to being a normal eigenvalue of A.
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The inequality

Theorem [Adam and T.]
Every eigenvalue λ of A ∈ C

n×n satisfies

(Reλ− δ2(A))(Imλ− u(A))2 ≤

(δ1(A)− Reλ)[v(A)− u(A)2 + (Reλ− δ2(A))(Reλ− δ1(A))]
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In and Out Regions

◮ Theorem gives rise to a cubic algebraic curve Γ(A):

{

s + i t : s, t ∈ R, δ2(A)− s +
(δ1(A)− s)(v(A)− u(A)2)

(δ1(A)− s)2 + (u(A)− t)2
= 0

}

∪ {δ1(A) + i u(A)}
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Classical
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The envelope

In and Out Regions

◮ Theorem gives rise to a cubic algebraic curve Γ(A):

{

s + i t : s, t ∈ R, δ2(A)− s +
(δ1(A)− s)(v(A)− u(A)2)

(δ1(A)− s)2 + (u(A)− t)2
= 0

}

∪ {δ1(A) + i u(A)}

◮ Γ(A) separates the complex plane in two regions:
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The envelope

In and Out Regions

◮ Theorem gives rise to a cubic algebraic curve Γ(A):

{

s + i t : s, t ∈ R, δ2(A)− s +
(δ1(A)− s)(v(A)− u(A)2)

(δ1(A)− s)2 + (u(A)− t)2
= 0

}

∪ {δ1(A) + i u(A)}

◮ Γ(A) separates the complex plane in two regions:
◮ Γin(A) =

{

s + i t : s, t ∈ R, (δ2(A)− s)[(δ1(A)− s)2 + (u(A)− t)2]

+ (δ1(A)− s)(v(A)− u(A)2) ≥ 0
}

Michael Tsatsomeros Washington State University Envelope: Localization for the Spectrum of a Matrix



Classical
Cubic curve

The envelope

In and Out Regions

◮ Theorem gives rise to a cubic algebraic curve Γ(A):

{

s + i t : s, t ∈ R, δ2(A)− s +
(δ1(A)− s)(v(A)− u(A)2)

(δ1(A)− s)2 + (u(A)− t)2
= 0

}

∪ {δ1(A) + i u(A)}

◮ Γ(A) separates the complex plane in two regions:
◮ Γin(A) =

{

s + i t : s, t ∈ R, (δ2(A)− s)[(δ1(A)− s)2 + (u(A)− t)2]

+ (δ1(A)− s)(v(A)− u(A)2) ≥ 0
}

◮ Γout(A) =

{

s + i t : s, t ∈ R, (δ2(A)− s)[(δ1(A)− s)2 + (u(A)− t)2]

+ (δ1(A)− s)(v(A)− u(A)2) < 0
}
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Possible configurations of Γ(A)
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Properties of Γ(A)

◮ Spectrum of A is contained in Γin(A).

Michael Tsatsomeros Washington State University Envelope: Localization for the Spectrum of a Matrix



Classical
Cubic curve

The envelope

Properties of Γ(A)

◮ Spectrum of A is contained in Γin(A).

◮ Configuration of Γ(A) depends on

∆ = (δ1(A)− δ2(A))
2 − 4(v(A)− u(A)2)

Michael Tsatsomeros Washington State University Envelope: Localization for the Spectrum of a Matrix



Classical
Cubic curve

The envelope

Properties of Γ(A)

◮ Spectrum of A is contained in Γin(A).

◮ Configuration of Γ(A) depends on

∆ = (δ1(A)− δ2(A))
2 − 4(v(A)− u(A)2)

◮ Γ(A) lies in the vertical zone {z ∈ C : δ2(A) ≤ Re z ≤ δ1(A)}
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The envelope

Properties of Γ(A)

◮ Spectrum of A is contained in Γin(A).

◮ Configuration of Γ(A) depends on

∆ = (δ1(A)− δ2(A))
2 − 4(v(A)− u(A)2)

◮ Γ(A) lies in the vertical zone {z ∈ C : δ2(A) ≤ Re z ≤ δ1(A)}

◮ Γ(A) is symmetric with respect to the horizontal line

L = {z ∈ C : Im z = u(A)}

Michael Tsatsomeros Washington State University Envelope: Localization for the Spectrum of a Matrix



Classical
Cubic curve

The envelope

Properties of Γ(A)

◮ Spectrum of A is contained in Γin(A).

◮ Configuration of Γ(A) depends on

∆ = (δ1(A)− δ2(A))
2 − 4(v(A)− u(A)2)

◮ Γ(A) lies in the vertical zone {z ∈ C : δ2(A) ≤ Re z ≤ δ1(A)}

◮ Γ(A) is symmetric with respect to the horizontal line

L = {z ∈ C : Im z = u(A)}

◮ Γ(A) intercepts L at δ1(A) + i u(A)
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Properties of Γ(A)

◮ Spectrum of A is contained in Γin(A).

◮ Configuration of Γ(A) depends on

∆ = (δ1(A)− δ2(A))
2 − 4(v(A)− u(A)2)

◮ Γ(A) lies in the vertical zone {z ∈ C : δ2(A) ≤ Re z ≤ δ1(A)}

◮ Γ(A) is symmetric with respect to the horizontal line

L = {z ∈ C : Im z = u(A)}

◮ Γ(A) intercepts L at δ1(A) + i u(A)

◮ Γ(A) is asymptotic to the vertical line {z ∈ C : Re z = δ2(A)}
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The envelope

Properties of Γ(A)

◮ Spectrum of A is contained in Γin(A).

◮ Configuration of Γ(A) depends on

∆ = (δ1(A)− δ2(A))
2 − 4(v(A)− u(A)2)

◮ Γ(A) lies in the vertical zone {z ∈ C : δ2(A) ≤ Re z ≤ δ1(A)}

◮ Γ(A) is symmetric with respect to the horizontal line

L = {z ∈ C : Im z = u(A)}

◮ Γ(A) intercepts L at δ1(A) + i u(A)

◮ Γ(A) is asymptotic to the vertical line {z ∈ C : Re z = δ2(A)}

◮ δ1(A) + i u(A) is a right most point of the numerical range.
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See properties of Γ(A)

Michael Tsatsomeros Washington State University Envelope: Localization for the Spectrum of a Matrix



Classical
Cubic curve

The envelope

The envelope of A

Play the spinning game again: The envelope of A is

E(A) =
⋂

θ∈[0,2π]

e−i θΓin(e
i θA)

Theorem [Psarrakos and T.] For any matrix A ∈ C
n×n,

σ(A) ⊆ E(A) ⊆ F (A)
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Proof

Hin(e
i θA) = {e−i θ(s + i t) : s, t ∈ R with s ≤ δ1(e

i θA)},

F (A) =
⋂

θ∈[0,2π]

Hin(e
i θA)

σ(A) = e−i θσ(e i θA) ⊆ e−i θΓin(e
i θA) ⊆ Hin(e

i θA)

Hence

σ(A) ⊆ E(A) =
⋂

θ∈[0,2π]

e−i θΓin(e
i θA) ⊆ F (A)
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Numerical range and Envelope of a Toeplitz matrix
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A complex matrix (and a better drawing method)

A =









14 + i 19 −4− i −55− i 13 −32 + i 13
27 + i 2 14− i 25 64 72
54 + i 47− i 3 14 + i 44 −32− i 42
76 73 4− i 2 −11 + i 24








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Properties of the curve and envelope

◮ E(A) is compact (closed subset of F (A)), but not necessarily
convex or connected.
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Classical
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The envelope

Properties of the curve and envelope

◮ E(A) is compact (closed subset of F (A)), but not necessarily
convex or connected.

◮ Γ(AT ) = Γ(A) and E(AT ) = E(A)
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The envelope

Properties of the curve and envelope

◮ E(A) is compact (closed subset of F (A)), but not necessarily
convex or connected.

◮ Γ(AT ) = Γ(A) and E(AT ) = E(A)

◮ Γ(A∗) = Γ(A) = Γ(A)
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Classical
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The envelope

Properties of the curve and envelope

◮ E(A) is compact (closed subset of F (A)), but not necessarily
convex or connected.

◮ Γ(AT ) = Γ(A) and E(AT ) = E(A)

◮ Γ(A∗) = Γ(A) = Γ(A)

◮ E(A∗) = E(A) = E(A)
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The envelope

Properties of the curve and envelope

◮ E(A) is compact (closed subset of F (A)), but not necessarily
convex or connected.

◮ Γ(AT ) = Γ(A) and E(AT ) = E(A)

◮ Γ(A∗) = Γ(A) = Γ(A)

◮ E(A∗) = E(A) = E(A)

◮ When A ∈ R
n×n, then Γ(A) and E(A) are symmetric with

respect to the real axis.

Michael Tsatsomeros Washington State University Envelope: Localization for the Spectrum of a Matrix



Classical
Cubic curve

The envelope

Properties of the curve and envelope

◮ E(A) is compact (closed subset of F (A)), but not necessarily
convex or connected.

◮ Γ(AT ) = Γ(A) and E(AT ) = E(A)

◮ Γ(A∗) = Γ(A) = Γ(A)

◮ E(A∗) = E(A) = E(A)

◮ When A ∈ R
n×n, then Γ(A) and E(A) are symmetric with

respect to the real axis.

◮ For every unitary matrix U ∈ C
n×n, Γ(U∗AU) = Γ(A) and

E(U∗AU) = E(A)
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The envelope

Properties of the curve and envelope

◮ E(A) is compact (closed subset of F (A)), but not necessarily
convex or connected.

◮ Γ(AT ) = Γ(A) and E(AT ) = E(A)

◮ Γ(A∗) = Γ(A) = Γ(A)

◮ E(A∗) = E(A) = E(A)

◮ When A ∈ R
n×n, then Γ(A) and E(A) are symmetric with

respect to the real axis.

◮ For every unitary matrix U ∈ C
n×n, Γ(U∗AU) = Γ(A) and

E(U∗AU) = E(A)

◮ For any b ∈ C, Γ(A+ bIn) = Γ(A) + b and
E(A+ bIn) = E(A) + b

Michael Tsatsomeros Washington State University Envelope: Localization for the Spectrum of a Matrix



Classical
Cubic curve

The envelope

Properties of the curve and envelope

◮ E(A) is compact (closed subset of F (A)), but not necessarily
convex or connected.

◮ Γ(AT ) = Γ(A) and E(AT ) = E(A)

◮ Γ(A∗) = Γ(A) = Γ(A)

◮ E(A∗) = E(A) = E(A)

◮ When A ∈ R
n×n, then Γ(A) and E(A) are symmetric with

respect to the real axis.

◮ For every unitary matrix U ∈ C
n×n, Γ(U∗AU) = Γ(A) and

E(U∗AU) = E(A)

◮ For any b ∈ C, Γ(A+ bIn) = Γ(A) + b and
E(A+ bIn) = E(A) + b

◮ For every real r > 0 and a ∈ C, Γ(rA) = r Γ(A) and
E(aA) = a E(A)
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Interesting cases/behavior

Proposition Let λ0 be a simple eigenvalue of A on the boundary

of F (A). If λ0 does not lie on a flat portion of ∂F (A), or if it is a
non-differentiable point of ∂F (A), then λ0 is an isolated point of
the envelope E(A).
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Normal matrices

D1 = diag{i 3, 5, 2 + i 3, 1 − i 2,−3},
D2 = diag{i 3, i 3, 5, 2 + i 3, 1− i 2, 3}
E(D1) and E(D2) are the shaded regions union the isolated points.
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Envelope of a normal matrix

• λ1, λ2, . . . , λk the simple extremal eigenvalues of normal A
(i.e., vertices of Co(σ(A)) which must be isolated points of E(A))
• C(A) := E(A) \ {λ1, λ2, . . . , λk}
Proposition

(i) If all the eigenvalues of A are simple and extremal,
then E(A) = σ(A).

(ii) If all the extremal eigenvalues of A are multiple, then
E(A) = C(A) = Co(σ(A)) = F (A).

(iii) If n = 2 or 3, then E(A) = σ(A).

(iv) Let n = 4. If all the eigenvalues of A are extremal,
and A does not have two double eigenvalues (for the
case of two double eigenvalues, see (ii) above), then
E(A) = σ(A).
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Envelope of a hermitian matrix

Corollary Let A ∈ C
n×n be a hermitian matrix with eigenvalues

δ1(A) ≥ δ2(A) ≥ · · · ≥ δn(A). Then,

E(A) = {δn(A)}∪[δn−1(A), δ2(A)]∪{δ1(A)} ⊆ [δn(A), δ1(A)] = F (A)
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Tridiagonal Toeplitz matrices

Tn(c , a, b) =













a b · · · 0

c a
. . .

...
...

. . .
. . . b

0 · · · c a













∈ C
n×n, bc 6= 0.

• Numerical range of Tn(c , a, b) is an elliptical disc.
• Envelope of Tn(c , a, b), bc 6= 0, is symmetric with respect to a.
• Envelope of Tn(c , a, b), bc 6= 0, is symmetric with respect to
the line

{a + γe i
arg(b)+arg(c)

2 : γ ∈ R}.
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Envelopes of a tridiagonal Toeplitz matrices

Real Axis
-5 0 5

Im
a
g
in

a
ry

 A
xi

s

-5

-4

-3

-2

-1

0

1

2

3

4

5

Real Axis
-5 0 5

Im
a
g
in

a
ry

 A
xi

s

-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure: E(T5(2 + 3i, 0,−1− i)) (left) and E(T5(2 + 3i, 0, 0.8− i)) (right).
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Block-shift matrices

A =















0 A1 0 · · · 0
0 0 A2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 Am

0 0 · · · 0 0















∈ C
n×n,

with m > 1 and square zero blocks along the main diagonal.
Theorem E(A) coincides with the circular disc D(0,R) centered at
the origin, with radius

R =

(

δ21(A)−
(

√

2δ1(A)(δ1(A)− δ2(A))−
√

v(A)
)2

)1/2

.
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Envelope of a Block-shift matrix

The numerical range of a block-shift matrix is also a circular disc.
The numerical radius of a block-shift matrix A is r(A) = δ1(A).
Thus

r(A)2 − R2 =
(

√

2r(A)(r(A) − δ2(A))−
√

v(A)
)2

.
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2x2 matrices

Theorem Let A be a 2× 2 complex matrix. Then E(A) = σ(A).
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The envelope

Similarities

Well-known result of Givens for the numerical range:

⋂

{

F (R−1AR) : R ∈ C
n×n, det(R) 6= 0

}

= conv{σ(A)}

An analogous result holds for the envelope (long proof if A is not
diagonalizable):

⋂

{

E(R−1AR) : R ∈ C
n×n, det(R) 6= 0

}

⊆ E(D(A)),

where D(A) is the diagonal matrix whose diagonal entries are the
eigenvalues of A.
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Connection to k-rank Numerical Range

Λk(A) =
{

µ ∈ C : PAP = µP for some rank-k orthog. proj.P ∈ C
n×n

}

=
{

µ ∈ C : X ∗AX = µIk for someX ∈ C
n×k such that X ∗X = Ik

}

• Connected to the construction of quantum error correction codes
for noisy quantum channels...

• Does not necessarily contain all of the eigenvalues of A.

Theorem Λn−1(A) ⊆ . . . ⊆ Λ2(A) ⊆ E(A) ⊆ F (A) = Λ1(A)
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Effort exerted and Improvement achieved

◮ To draw the bounding curve Γ(A), the additional
computational effort required is for δ2(A) and the quantities
v(A) and u(A) which depend on y1.

Michael Tsatsomeros Washington State University Envelope: Localization for the Spectrum of a Matrix



Classical
Cubic curve

The envelope

Effort exerted and Improvement achieved

◮ To draw the bounding curve Γ(A), the additional
computational effort required is for δ2(A) and the quantities
v(A) and u(A) which depend on y1.

◮ E(A) can represent a dramatic improvement over F (A) in
localizing the eigenvalues of A.
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Effort exerted and Improvement achieved

◮ To draw the bounding curve Γ(A), the additional
computational effort required is for δ2(A) and the quantities
v(A) and u(A) which depend on y1.

◮ E(A) can represent a dramatic improvement over F (A) in
localizing the eigenvalues of A.

◮ The improvement expected depends on the geometry of the

eigenvalues.
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Effort exerted and Improvement achieved

◮ To draw the bounding curve Γ(A), the additional
computational effort required is for δ2(A) and the quantities
v(A) and u(A) which depend on y1.

◮ E(A) can represent a dramatic improvement over F (A) in
localizing the eigenvalues of A.

◮ The improvement expected depends on the geometry of the

eigenvalues.

◮ Technique can potentially be generalized to utilize more
eigenvalues of H(A).
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One last example

The envelope of a Frank matrix (11× 11 highly ill-conditioned)
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