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Introduction

Given a square matrix A ∈ CN×N . The spectrum of A is

σ(A) :=
{
z ∈ C : zI − A not invertible

}
.

We write ‖ · ‖ for the spectral norm on CN×N , de�ned by

‖A‖ := sup
{
‖Ax‖2 : ‖x‖2 = 1

}
, where ‖ · ‖2 denotes the

Euclidean norm on CN .

We say :

A is power bounded if supn≥0 ‖An‖ <∞.

A is exponentially bounded if supt≥0 ‖etA‖ <∞.
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Power Bounded Matrices

KMT1 : A is power bounded if and only if

∃C > 0 such that
∥∥(zI − A

)−1∥∥ ≤ C

|z | − 1
(|z | > 1).

In particular, σ(A) ⊂ D �the unit disc�.

Kreiss Constant with respect to D :

K(D) := sup
|z|>1

(|z | − 1)
∥∥(zI − A

)−1∥∥.
Kreiss Matrix Theorem (Power matrices)

K(A) ≤ supn≥0 ‖An‖ ≤ e N K(A),
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Exponentially Bounded Matrices

KMT2 : A is exponentially bounded if and only if

∃C > 0 such that
∥∥(zI − A

)−1∥∥ ≤ C

Re(z)
(Re(z) > 0).

In particular, σ(A) ⊂ P �the left-half plane�.

Kreiss Constant with respect to P :

K(P) := sup
Re(z)>0

(Re(z))
∥∥(zI − A

)−1∥∥.
Kreiss Matrix Theorem ((Exponential matrices)

K(A) ≤ supt≥0 ‖etA‖ ≤ e N K(A),
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The constant eN is the result of a large development following the

original statement of the Kreiss matrix theorem.

Kreiss (1962) : K(A)N
N

Morton (1964) : 6N(N + 4)5NK(A)

Miller and Strang (1966) : NNK(A)

Miller (1967) : e9N
2K(A)

Strang and Laptev (1978) : 32
π eN

2K(A)

Tadmor (1981) : 32
π eNK(A)

LeVeque and Trefethen (1984) : 2eNK(A)
Conjoncture : The optimal bound is eNK(A)

Smith (1985) : (1 + 2
π )eNK(A)

Spijker proved the conjoncture in 1991.
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Goal of the Talk

Kreiss Matrix theorem provides estimates of upper bounds of ‖An‖
and ‖etA‖ according to the resolvent norm.

Question : What about the norm ‖f (A)‖ for an arbitrary
holomorphic function f on a neighborhood of σ(A) ?
Cauchy Integral Formula :

f (A) =
1

2πi

∫
Γ

f (z)(zI − A)−1 d z .

To understand ‖f (A)‖, it is interesting to study the resolvent

norm
∥∥(zI − A

)−1∥∥ of A.
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Example (scholarpedia.org)

Consider the matrix

A =

 1 + i 0 i

−i 0.2 0

0.7i 0.2 0.5


The ε−pseudospectrum of A is the

set of all z ∈ C for which the graph

of the function z 7→
∥∥(zI − A

)−1∥∥
lies above the level 1

ε .

The boundaries of the pseudospectra

of A for the values

ε = 1, 1/2, 1/3, 1/4, 1/6, 1/10, 1/20
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500.000 random perturbations A+ E with ‖E‖ < ε



Introduction Pseudospectra Generalization of the Kreiss Matrix Theorem

Pseudospectra

The ε−pseudospectrum of A, ε > 0, is

σε(A) :=
{
z ∈ C :

∥∥(zI − A)−1
∥∥ > 1

ε

}
.

Theorem

Let A ∈ CN×N and ε > 0 be arbitrary. TFSAE
(i) z ∈ σε(A).
(ii) ‖(zI − A)V ‖ < ε for some V ∈ CN with ‖V ‖ = 1.
(iii) z ∈ σ(A+ E ) for some E ∈ CN×N with ‖E‖ < ε.
(iv) smin(zI − A) > ε
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Identical Pseudospectra

Let A, B be N × N matrices with identical pseudospectra, i. e.∥∥(zI − A)−1
∥∥ =

∥∥(zI − B)−1
∥∥ (∀z ∈ C).

Must A,B be unitarily similar (B = U∗AU) ?

Must A,B have the same norm behavior ? i.e.∥∥f (A)
∥∥ =

∥∥f (B)
∥∥

for all holomorphic functions f on the spectrum of A and B .
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Theorem

If A and B have identical pseudospectra, then they have the same

spectrum and the same numerical range.

Theorem (Ransford-Raoua�, 2013)

Let A and B be N × N matrices with identical pseudospectra.

Then, for every Möbius transformation f holomorphic on the

spectrum of A and B, we have∥∥f (A)
∥∥ ≤ M

∥∥f (B)
∥∥,

where M := 5+
√
33

2 ' 5, 3723.
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Theorem (Ransford-Raoua�, 2013)

Let f be a function holomorphic in a domain Ω, and suppose that f

is neither constant nor a Möbius transformation. Then, given

N ≥ 6 and M > 1, there exist N × N matrices A,B with spectra in

Ω, such that∥∥(zI − A)−1
∥∥ =

∥∥(zI − B)−1
∥∥ (∀z ∈ C)

and ∥∥f (A)
∥∥ > M

∥∥f (B)
∥∥.
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Super-identical pseudospectra

Two matrices A,B ∈ CN×N have super-identical pseudospectra if

sk(zI − A) = sk(zI − B) (∀z ∈ C and k = 1, . . . ,N).

Theorem (Ransford, 2007)

If A,B ∈ CN×N have super-identical pseudospectra, then, for any

function f holomorphic on their spectrum,

1√
N
≤ ‖f (A)‖
‖f (B)‖

≤
√
N.

Theorem (Armentia�Gracia�Velasco, 2012)

If A,B have super-identical pseudospectra, then they are similar.
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Theorem (D. Farenick et al., 2011)

Let A be an upper triangular Toeplitz matrix with nonzero

superdiagonal, and let B be any matrix of the same size. Then A

and B are unitarily similar if and only if they have super-identical

pseudospectra.

Theorem (D. Farenick et al., 2011)

Let A and B be an N × N upper triangular matrices that are

indecomposable with respect to similarity. Then A and B are

unitarily similar if and only if Ak and Bk have super-identical

pseudospectra for all k = 1, · · · ,N, where Ak and Bk are the

leading principal k × k submatrices of A and B respectively.
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Holomorphic Functions on the Unit Disc

Denote by A(D) the set of holomorphic functions on D and

continuous on D.

Theorem (Vitse, 2005)

Suppose A is an N × N matrix such that σ(A) ⊂ D and

K(D) <∞. Then, for all f ∈ A(D),

‖f (A)‖ ≤ 16

π
K(D)N‖f ‖D,

where ‖f ‖D := max|z|=1 |f (z)|.
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General Complex Domain

Riemann Mapping Theorem : there is a unique conformal map

φ from Ωc to Dc normalized by φ(∞) =∞ and φ′(∞) > 0,

w = φ(z) := dz + d0 +
∞∑
k=1

dk
zk
, (d > 0), z ∈ Ωc .

Kreiss Constant with respect to Ω :

K(Ω) := sup
z 6∈Ω

|φ(z)| − 1

|φ′(z)|
∥∥(zI − A

)−1∥∥.
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Arbitrary disc in the complex plane

Theorem

Let D be an arbitrary disc on the complex plane. Suppose A is an

N × N matrix with σ(A) ⊂ D and K(D) <∞. Then, for all

function f ∈ A(D),

‖f (A)‖ ≤ 16

π
K(D)N‖f ‖D ,

where ‖f ‖D := maxz∈D |f (z)|.

What about general complex domains ?
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The nth Faber polynomial Fn(z), for n = 0, 1, 2, · · · ,
associated with Ω is the polynomial part of [φ(z)]n.

Fn(z) is a polynomial of degree n.

Theorem (Toh-Trefethen, 1999)

Let Ω be a compact subset of the complex plane such that its

complementary Ωc is simply connected in the extended complex

plane. Suppose A is an N × N complex matrix with σ(A) ⊂ Ω and

K(Ω) <∞. If the boundary of Ω is twice continuously

di�erentiable, then for all n ≥ 0,

‖Fn(A)‖ ≤ CΩ e N K(Ω),

where the constant CΩ depends only on Ω.

Note that if Ω is the unit disk, we have Fn(A) = An.
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Theorem (Toh-Trefethen, 1999)

Let Ω be a compact subset of the complex plane such that its

complementary Ωc is simply connected in the extended complex

plane. Suppose A is a bounded linear operator in Hilbert space,

with σ(A) ⊂ Ω and K(Ω) <∞. Then for all n ≥ 0,

‖Fn(A)‖ ≤ e (n + 1)K(Ω), (1)

Converely, if supn≥0 ‖Fn(A)‖ <∞, then σ(A) ⊂ Ω, K(Ω) is �nite,

and

K(Ω) ≤ sup
n≥0
‖Fn(A)‖. (2)
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A Markov function is a function of the form

f (z) :=

∫ β

α

dµ(x)

z − x
, (3)

where µ is a positive measure with supp(µ) ⊂ [α, β] for
−∞ ≤ α < β <∞.

Example :

log(1+z)
z

=
∫ −1
−∞

−1
x
d x

z−x (z 6∈ (−∞,−1])

zγ =
∫ 0
−∞

−|x |γ d x
z−x , −1 < γ < 0 (z 6∈ (−∞, 0]).
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Theorem

Let Ω be a symmetric compact subset of the complex plane such

that its complementary Ωc is simply connected in the extended

complex plane. Suppose A is a linear bounded operator in a Hilbert

space, with σ(A) ⊂ Ω and K(Ω) <∞. If f is a Markov function

de�ned by (3), then

‖f (A)‖ ≤ eCα,βΩ K(Ω) ‖f ‖Ω,

where the constant Cα,βΩ depends only on Ω, α and β.
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Example 1 : Let Ω = D the closed unit disc. Suppose A is a linear

bounded operator in a Hilbert space, with σ(A) ⊂ D and

K(D) <∞. If f is a Markov function de�ned by (3), with β < −1,
then

‖f (A)‖ ≤ e
β2

(1 + β)2
K(D) ‖f ‖D,

Example 2 : Let Ω the closed ellipse with foci at ±1 and semi-axes

a = 1
2(R + 1

R
) and b = 1

2(R − 1
R

) for some R > 1. Suppose A is a

linear bounded operator in a Hilbert space, with σ(A) ⊂ Ω and

K(Ω) <∞. If f is a Markov function de�ned by (3), with β < −a,
then

‖f (A)‖ ≤ e
(
√
β2 − 1− β)2

(
√
β2 − 1− β − R)2

K(Ω) ‖f ‖Ω,
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Thank you for your attention !
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