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Problem

By RH∞p×q we denote all stable rational p × q matrix functions. Here
stable means all poles are outside the closed unit disc. Such functions are
analytic on the open unit disc D and continuous on the closed unite disc
D. Hence they are matrix-valued H∞ functions as well as H2 functions.

Problem. Given G ∈ RH∞p×q, p ≤ q, find X ∈ RHq×p such that

G (z)X (z) = Ip [Ip is the p × p identity matrix]

Example. G (z) =
[
1 + z −z

]
. Thus p = 1 and q = 2. We have

G (z)X (z) = 1 ⇐⇒ (1 + z)x1(z)− zx2(z) = 1 [classical Bezout]

X (z) ≡
[

1
1

]
=⇒ G (z)X (z) = 1.
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Main aims

We are interested in

(a) conditions of existence of solutions

(b) least squares solution

(c) description of all solutions
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Existence of solutions

With G ∈ RH∞p×q we associate the analytic Toeplitz operator TG given by:

TG =


G0

G1 G0

G2 G1 G0
...

...
...

. . .

 : `2+(Cq)→ `2+(Cp).

`2+(Ck) ≡ H2(Ck) =⇒ TG ≡ MG

It follows that

G (z)X (z) = Ip×p (z ∈ D)⇒ TGTX = TGX = I`2+(Cm)

⇒ TG right invertible.
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THM. Let G ∈ RH∞p×q. Then the equation

G (z)X (z) = Ip (?)

has a solution X ∈ RH∞q×p if and only if the Toeplitz operator TG is right
invertible. Moreover, in that case TGT

∗
G is invertible and the function

X (·) := FCp

(
T ∗G (TGT

∗
G )−1Ep

)
, where Ep :=


Ip
0
0
...

 ,

is in RH∞p×q and satisfies the Bezout equation (?). Furthermore, X is the
least squares solution, that is, for any other solution Y ∈ RH∞q×p we have

‖TXEpu‖`2+(Cq) ≤ ‖TYEpu‖`2+(Cq) for each u in Cp.

N.B. The operator T ∗G (TGT
∗
G )−1 is the Moore-Penrose inverse of TG .
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Computing solutions by using state space methods (1)

G ∈ RH∞p×q admits a finite dimensional state space realization, that is, G
can be written as:

G (z) = D + zC (In − zA)−1B, where

A,B,C ,D are matrices of appropriate sizes, and

A is stable, that is all eigenvalues of A are in the open unit disc D.

Given the realization of G we let P be the unique solution of the Stein
equation P − APA∗ = BB∗, that is, P =

∑∞
n=0 A

nBB∗A∗n. Furthermore,
we consider the algebraic Riccati equation:

(ARE) Q = A∗QA + (C − Λ∗QA)∗(R0 − Λ∗QΛ)−1(C − Λ∗QA)

where R0 = DD∗ + CPC ∗ and Λ = BD∗ + APC ∗.
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Computing solutions by using state space methods (2)

(ARE) Q = A∗QA + (C − Λ∗QA)∗(R0 − Λ∗QΛ)−1(C − Λ∗QA)

P − APA∗ = BB∗

THM. The operator TG is right invertible if and only if

(1) the ARE has a (unique) stabilizing solution Q, that is,

(a) Q is an n × n matrix satisfying (ARE),

(b) R0 − Λ∗QΛ is positive definite,

(c) the matrix A0 := A−Λ(R0−Λ∗QΛ)−1(C −Λ∗QA) is stable.

(2) the matrix In − PQ is non-singular.
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Computing solutions by using state space methods (3)

(ARE) Q = A∗QA + (C − Λ∗QA)∗(R0 − Λ∗QΛ)−1(C − Λ∗QA)

P − APA∗ = BB∗

THM 1. Assume the ARE has a stabilizing solution Q and In − PQ is
non-singular. Then the least squares solution Φ is given by

Φ(z) =
(
Ip − zC1(In − zA0)−1(In − PQ)−1B

)
D1,

where

A0 = A− Λ(R0 − Λ∗QΛ)−1(C − Λ∗QA), [A0 is stable ]

C1 = D∗C0 + B∗QA0,

with C0 := (R0 − Λ∗QΛ)−1(C − Λ∗QA),

D1 = (D∗ − B∗QΛ)(R0 − Λ∗QΛ)−1 + C1(In − PQ)−1PC ∗0 .
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Computing solutions by using state space methods (4)

THM 2. Assume the ARE has a stabilizing solution Q and In − PQ is
non-singular. Then all solutions are given by X = Φ + ΘF . Here Φ is the
least squares solution, the free parameter F is an arbitrary function in
RH∞(q−p)×p and Θ ∈ RH∞q×(q−p) is given by

Θ(z) =
(
Iq − zC1(In − zA0)−1(In − PQ)−1B

)
D̂.

Here A0 and C1 are as on the previous slide, and D̂ is any one-to-one
q × (q − p) matrix such that

D̂D̂∗ = Iq − (D∗ − B∗QΛ)(R0 − Λ∗QΛ)−1(D − Λ∗QB)+

− B∗QB − C1(In − PQ)−1PC ∗1 .

Furthermore, D̂ is uniquely determined up to a constant unitary matrix on
the right and Θ is inner.
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Back to the example G (z) =
[
1 + z −z

]
G (z)X (z) = 1 ⇐⇒ (1 + z)x1(z)− zx2(z) = 1 [classical Bezout]

We already know that X (z) =

[
1
1

]
is solution. Questions: what is the

least square solution, all solutions?

We apply our theorems. A stable realization of G is given by

A = 0, B =
[
1 −1

]
, C = 1, D =

[
1 0

]
.

The solution P of the Stein equation P − APA∗ = BB∗ is given by P = 2,

R0 = DD∗ + CPC ∗ = 3 and Λ = BD∗ + APC ∗ = 1.

The corresponding ARE is Q = (3− Q)−1.
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Example – cont’d

The corresponding ARE is Q = (3− Q)−1, which has two solutions:
Q = 1

2(3±
√

5). The stabilizing solution is given by Q = 1
2(3−

√
5).

Indeed, for this Q we have

R0 − Λ∗QΛ = 3− Q =
1

2
(3 +

√
5) > 0;

A0 = A− Λ(R0 − Λ∗QΛ)−1(C − Λ∗QA) = Q, and thus A0 is stable.

Furthermore, I − PQ =
√

5− 2 6= 0.

Then THM 1 shows that for G (z) =
[
1 + z −z

]
the least squares

solution of G (z)X (z) = 1 is given

X (z) =
Q

1− 2Q
(1 + zQ)−1

[
1− Q
Q

]
, where Q = 1

2(3−
√

5).
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Example – cont’d

Furthermore, THM 2 shows that for G (z) =
[
1 + z −z

]
all stable

rational 2× 1 matrix solutions Y of G (z)Y (z) = 1 are given by

Y (z) = X (z) + Θ(z)ϕ(z),

where ϕ is any scalar stable rational function and

Θ(z) =
√
Q(1 + zQ)−1

[
z

1 + z

]
, with Q = 1

2(3−
√

5).
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Where does the ARE come from?

Put R(z) = G (z)G (z̄−1)∗. Let {Rj}j∈Z be the Fourier coefficients of R.

TR :=


R0 R−1 R−2 · · ·
R1 R0 R−1 · · ·
R2 R1 R0 · · ·
...

...
...

. . .

 : `2+(Cp)→ `2+(Cp). [TR 6= TGT
∗
G ]

R(z) = zC (I − zA)−1Λ + (DD∗ + CPC ∗) + Λ∗(zI − A∗)−1C ∗ (z ∈ T)

THM. The operator TR is invertible if and only if

Q = A∗QA + (C − Λ∗QA)∗(R0 − Λ∗QΛ)−1(C − Λ∗QA)

has a stabilizing solution Q. Moreover in that case Q := W ∗
obsT

−1
R Wobs ,

where Wobs = col [CAj ]∞j=0.
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Thank you for your attention!
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