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Problem

p(x) = a0 + a1x + a2x
2 + . . .+ an−1x

n−1 + xn (monic)

Find the zeros.

companion matrix

A =


0 · · · 0 −a0
1 0 · · · 0 −a1

1
. . .

...
...

. . . 0 −an−2

1 −an−1


. . . get the zeros of p by computing the eigenvalues.

MATLAB’s roots command

upper Hessenberg

Francis’s (implicitly-shifted QR) algorithm

Structure not fully exploited. Can we do better?
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Unitary-plus-rank-one Structure

Companion matrix is unitary-plus-rank-one:


0 · · · 0 1
1 0

. . .
...

1 0

 +


0 · · · 0 −a0 − 1
0 0 −a1
...

...
...

0 · · · 0 −an−1


We exploit this structure to get a faster algorithm.

Francis’s algorithm preserves this structure.
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Cost of solving companion eigenvalue problem

If structure not exploited:

O(n2) storage, O(n3) flops
Francis’s algorithm

If structure exploited:

O(n) storage, O(n2) flops
data-sparse representation + Francis’s algorithm
several methods proposed
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Some of the Competitors

Chandrasekaran, Gu, Xia, Zhu (2007)

Bini, Boito, Eidelman, Gemignani, Gohberg (2010)

Boito, Eidelman, Gemignani, Gohberg (2012)

Fortran codes available

unitary-plus-rank-one structure exploited

evidence of backward stability

quasiseparable generator representation

We do something else.

Our method is faster, and we can prove backward stability.
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Storage Scheme, Part I

Store Hessenberg matrix in QR decomposed form

A = QR

Q is unitary, R is upper triangular

looks inefficient! but it’s not!
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Storage Scheme, Part I


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 =
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∗ ∗ ∗ ∗
∗ ∗ ∗
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
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Now invert the core transformations
to move them to the other side.
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Storage Scheme, Part II

Now, how do we store R?

R is also unitary-plus-rank-one:

A = QR

=


0 · · · 0 1
1 0

. . .
...

1 0




1 0 · · · −a1
1 −a2

. . .
...
−a0



=

��
��

. . . ��


1 0 · · · −a1

1 −a2
. . .

...
−a0


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Storage Scheme, Part II

Adjoin a row and column for wiggle room. (not obvious)
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Storage Scheme, Part II

Leaving out a few steps,

we get

R =

�
�
�

�
�

�
�

�


��
��
��
��

+ · · ·


Bonus: Redundant information (Read our paper.)

We can ignore the rank-one part!

Storage is O(n).
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Representation of A

Altogether we have

A = QR

=

��
��
��

�
�
�

�
�

�
�

�


��
��
��
��

+ · · ·


A is stored entirely in terms of core transformations.

David S. Watkins roots of polynomials



Working with Core Transformations

We want to perform iterations of Francis’s algorithm on this
Structure.

Two important operations:

Fusion
� �� � ⇒ ��

Turnover (aka shift through, Givens swap, . . . )

� ��
�
�

� ⇔ �
�
�
�� �
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Francis Iteration (the core chase)

ignoring rank-one part . . .

A =

��
��
��

�
�
�

�
�

�
�

�

��
��
��
��
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Done!

iteration complete!

Cost: 3n turnovers/iteration, so O(n) flops/iteration.

O(n) iterations in all.

Total flop count is O(n2).
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Performance

At degree 1000

method time

LAPACK 7.2

BEGG 1.2

AMVW 0.2
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Companion Pencil, a variant

p(x) = a0 + a1x + · · ·+ anx
n (not monic)

Divide by an, or . . .

companion pencil:

λ


1

1
. . .

1
an

−


0 · · · 0 −a0
1 0 · · · 0 −a1

1
. . .

...
...

. . . 0 −an−2

1 −an−1


We can handle this too (for a price),

. . . but is this really better?

Additional collaborator: Leonardo Robol

We can also handle matrix polynomials.
(story for another day)
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Backward Stability Odyssey

These algorithms are obviously backward stable

because they act entirely on unitary matrices,

but it took us a while to write down a correct argument.

First written attempt (horrible)

Second attempt was much better (2015 paper) . . .

. . . but there was one one more thing!

Corrected in companion pencil paper. We also exploited the
structure of the backward error to get a better result.
Rejected!

Search for examples.

Companion matrix code amazingly robust.

Take a closer look at backward error.
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Backward Stability Odyssey

Show computed roots of p are
exact roots of a nearby polynomial p̂.

Must p̂ be monic? This makes a difference!

If monic: ‖a− â‖ . u ‖a‖2 (a is coefficient vector of p)

if not: ‖a− â‖ . u ‖a‖

good as we could hope for

confirmed by numerical experiments

Meaning: Most of the error is “parallel” to p
and is therefore irrelevant.
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If monic: ‖a− â‖ . u ‖a‖2 (a is coefficient vector of p)

if not: ‖a− â‖ . u ‖a‖
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Nice Picture
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LAPACK balanced

Our code is not just faster, it is also more accurate!

Thank you for your attention.
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