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Fermat’s Last Theorem and Beyond

Recall the usual Fermat’s Last Theorem proven by Wiles’ et al.

Theorem

The equation P + yP = 2P has no solutions in non-zero integers
x,y,z forp > 3.

Sometime in the 1990’s several people (Beal, Granville,
Tijdeman-Zagier, ...) noted and made a conjecture regarding
the following generalization.

Conjecture

The equation P + y? = 2" has no solutions in non-zero
mutually coprime integers x,y, z for p,q,r > 3.

It is not clear who was the first to make the conjecture. Beal
has funded a $1 million USD prize for its resolution.

Imin Chen On the generalized Fermat equation



Galois representations and Modular Forms are useful ...

The proof of Fermat’s Last Theorem used the following idea:
@® Find a Frey curve: Given a ‘non-trivial primitive solution’
to oP 4 yP = 2P, attach a ‘Frey curve’ E.
® FEstablish modularity and level lowering: Show that
pPEp = pyp where f is a modular form of level N bounded
independently of the solution and exponent p, which we
refer to as the Serre level.
® Eliminate forms: Show that pg, = py, is not possible.
The overall strategy, which we now refer to as ‘the modular
method’, was discovered by Frey, Serre, Ribet, et al. but it was
not until Wiles’ that we had the crucial ingredient of
modularity.
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It is useful to make the following definitions and comments:

A solution to a generalized Fermat equation 2P + y? = 2" is a
triple (a,b,c) € Z3. A solution (a, b, c) is non-trivial iff abc # 0.
A solution (a, b, ¢) is primitive iff (a,b,c) = 1.

The hypothesis that (x,y,z) = 1 ensures the problem is
1-dimensional, rather than 2-dimensional.

Without it, there are many solutions. For instance, for the
equation 2 + y° = 2P, we have the solution 2° + 2° = 26,

It is also the case that if we have one solution (xg,yo, z0), we
can produce infinitely many imprimitive solutions from it.

The hypothesis that p,q,r > 3 ensures x < 0 (except for
p=q=r=3) and we avoid all known solutions.
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When % + % + % < 1, all known non-trivial primitive solutions

have min {p, ¢,r} equal to 2. They result from the identities

1P 423 = 32,

25 + 72 = 34,

74132 =27,
2T 173 =712,

3%+ 114 = 1222,

177 + 76271 = 210639282,
14143 4 22134592 = 657,
92623 + 153122832 = 1137,
438 + 962223 = 300429072,
and 33% + 15490342 = 156133.
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The Modular Method works ... sometimes.

Natural question: Can the modular method used to tackle the
generalized Fermat equation 2P + y? = 2”7

Short Answer: Sometimes.

For example:
o 2P+ yP = 2P for p > 3 (Wiles)
e xP +yP =22 forp>5 (Darmon-Merel)
o 2P +yP =23 forp>5 (Darmon-Merel)
o 22 +y* = 2P for p > 5 (Ellenberg, Bennett-Ellenberg-Ng)
o 22 +9% = 2P for p > 3 (Bennett-Chen)
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o 23 + 43 = 2P for 84.4% of prime exponents p:

3<p<10°,p=2 (mod 3),p=2,3 (mod 5),

p =61 (mod 78),p = 51,103,105 (mod 106), or
p=43,49,61,79,97,151, 157, 169, 187, 205, 259, 265, 277,

995, 313, 367, 373, 385, 403, 421, 475, 481, 493, 511, 529, 583, 601,
619, 637,691, 697, 709, 727, 745, 799, 805, 817, 835, 853, 907, 913,
925,943,961, 1015, 1021, 1033, 1051, 1069, 1123, 1129, 1141, 1159,
1177,1231,1237,1249, 1267, 1285 (mod 1296)

(Kraus, Chen-Siksek, Freitas)
o 22+ 9y =22 forp=1 (mod 8)
(Bennett-Chen-Dahmen-Yazdani)
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Where the obstructions lie ...

@® We can’t find a suitable Frey curve.
® Modularity is not yet established.

® We can’t eliminate some modular forms.
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Construction of Frey curves

Definition

Let K be a number field. A Frey representation over K of
signature (p, g, r) is a representation p : G ;) — GL2(F,) such
that

o P& =p |G » has trivial determinant and is irreducible.

o p™ ig unramified outside {0, 1, c0}.

e The inertia groups at 0,1, co have order p, g, r, respectively.
The original modular method used Frey elliptic curves over Q.

Darmon-Granville classified the Frey representations which give
rise to Frey elliptic curves over Q.

The prime non-compact signatures which have Frey elliptic
curves over Q are: (2,3,00), (00, 00,2), (c0,00,3), (3,3,00),
(00, 00, 00).
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We can expand the list to include non-compact signatures
which arise from arithmetic triangle groups (which were
classified by Takeuchi).

This adds signatures (2,4, 00) and (2,6, 00), which require using
Frey Q-curves (which are elliptic curves over a number field
whose isogeny class is defined over Q).

To tackle more signatures, we need Frey curves which are not
necessary defined over QQ nor restricted to being elliptic curves.
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Darmon’s program: Frey curves

Darmon proposed a strategy to resolve a one parameter family
of generalized Fermat equations, i.e., signature (p,p,r), (r,r,p),
or (r,q,p), where the aim is to resolve these generalized Fermat
equations for p sufficiently large compared to fixed r,q.

In particular, he constructed:
e explicit Frey hyperelliptic curves for signature (p, p,r),

e described Frey hypergeometric abelian varieties for
signatures (r,r,p) and (r,q,p).
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For example, for the equation 2P + y? = 2°, we have the Frey
hyperelliptic curves,

y? = 2° — 5cta? + 5cte — 2(af — OP)
A = 2°5°a*Pb*P

y? = (z + 2¢)(2° — 5c%2? + 5ctr — 2(aP — b))
A = 21255¢%Pp%,

which we attach to a non-trivial primitive solution (a, b, c) € Z3.
The jacobians J of these hyperelliptic curves (genus 2) have real
multiplication by Q(v/5).
In the modular method, the following gets generalized:

* pEp gets replaced by py,

e the classical modular form f gets replaced by a Hilbert
modular form f over Q(v/5).

Imin Chen On the generalized Fermat equation



Freitas’ elliptic curves over totally real fields

Theorem (Darmon)

Let p: Gy — GLa(Fy) be a Frey representation over K of
signature (p,p,r) or (r,r,p) (resp. (r,q,p)). Then
o K contains Q(¢ + 1) (resp. QG+ GG+ ()
e the traces of p contain the residue field of Q(¢r + 1)
(resp. Q(¢r + ¢t ¢+ ¢ 1)) at a prime p above p.

Darmon in fact gives a classification of Frey representations of
these signatures. This result may appear to suggest we require
more general curves.

In fact, this is not entirely the case.

Freitas constructed Frey elliptic curves over totally real fields
for signature (r,r,p).
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For example, for a® + b® = cP:

y? = 2% — 5(a® + b*)x? + 5¢5(a, b)r,
A = 253(a 4+ b)2(a® + b°)?
y? =23 + 2(a + b)z? — wYs(a, b)x
A = 250¢5(a, b)s(a, b)
y? =23 4+ 2(a — b)x? + (=3(w — ©)/10 4+ 1/2) ¢5(a, b)x
A =2%(=3(w—)/10+1/2)* (w — ©) /10 + 1/2) ¢5(a, b)ips(a, b).

where
w=(-1+5)/2

X5 + Y5 = (X + Y)¢5(X>Y)¢_55(X7 Y)
¢5(X>Y) = wS(Xa Y)J}S(X7Y)
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There is no inconsistency because Freitas’ Frey elliptic curves
are Frey representations of multiplicity oo on some subset of the
5-th roots over unity.

Darmon’s description of Frey hypergeometric abelian varieties is
somewhat less explicit. For small g, r, it is still possible to
describe the curve in hyperelliptic form.

For example, for the equation a® — b°> = P, we have the Frey
hyperelliptic curve

y? = 2% — 10023 + 12ax + 50%, A = 2'23%5°(a® — b°)%
On the other hand, hypergeometric abelian varieties have a rich

structure. An approach of current interest is to try to make the
modular method work for hypergeometric abelian varieties.
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Modularity and level lowering:

Fermat’s Last Theorem has historically inspired a lot of deep
mathematics, and its eventual proof was no different.

Wiles’ breakthrough paved the road for proving modularity
results of greater and greater generality, in particular results
which are valid over totally real fields.

Some highlights include:

e A proof of Serre’s conjectures (i.e. every odd continuous
Galois representation Gg — GLa(F),) is modular) by
Khare-Wintenberger.

e Every elliptic curve over a real quadratic field is modular
(Freitas-Le Hung-Siksek).
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Both rely on the deep machinery in the form of modularity
lifting theorems, developed by a long list of mathematicians.

For level lowering we have results from Fujiwara, Jarvis, and
Rajaei, which usually suffice.

Given the rapid developments on the Galois representation side,
modularity and level lowering no longer pose an essential
obstruction, at least in comparison to the other ones we discuss.

There is one important technical point however for level
lowering: one needs to have irreducibility of the Galois
representation pg, or more generally, pj,.

In the elliptic curve case, this is usually provided by a version of
Mazur’s Theorem.

Theorem

Let E be an elliptic curve over Q. Then pg, is irreducible for
p > 163.
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For Frey elliptic curves over QQ, the bound is often p > 5 due to
the fact that Frey elliptic curves are semi-stable outside a small
set of primes.

For Frey elliptic curves over a totally real field, one can use
more general Mazur-type results, such as the uniform bound
boundedness theorems by Merel and Parent.

For more general Frey curves, no Mazur-type result is known.

Let K be a totally real number field and fix a prime q of K. Let
¢, f > 1 be integers with ¢ even. Consider a finite set S¢(q) of
elements of the form aq 4+ ay where a; € Z are (for every
embedding Z < C) of complex absolute value N(q)//? and
arag = N(q)/.
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Theorem (Billerey-Chen-Dieulefait-Freitas)

There exists a constant c1 = c1(K, ¢, f,S¢(q)) such that the following
holds. Suppose that p > ¢1 and A/K is an abelian variety satisfying

(i) A is semistable at the primes of K above p,
(ii) A is of GLy-type with multiplications by some totally real field F',

(iii) all endomorphisms of A are defined over K, that is
Endg (A) = Endg(A),

(iv) A over K has inertial exponent c,
(v) A has potentially good reduction at q with residual degree f,

(vi) the trace of Frobg acting on V,(A) lies in Sf(q), where p is a
prime of F above p.

Then the representation pa p is irreducible.
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We say that an abelian variety A/K has inertial exponent ¢ € N
if for every finite prime v of the number field K, there exists a
finite Galois extension M /K such that A/M is semistable at all
primes of M lying over v, and the exponent of the inertia
subgroup at v of Gal(M/K) divides c.

Let A/K be an abelian variety with potentially good reduction
at a prime q of a number field K. We say that A has residual
degree f at q if f is minimal among the degrees of the residual
extensions corresponding to all extensions L/K, such that A/L
has good reduction.
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Methods to eliminate forms

We come to what is perhaps the most serious obstruction,
which is showing that pg;, = py, cannot occur.

The methods used can be divided into local and global methods.

Local methods

©® Check if pg,(F) = pyp(F) (mod p) at a Frobenius element
F.

® Check if pg,, |12 prp |1 by comparing the size of the image
of inertia, fixed fields of inertia, or conductors.
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Some examples of global methods.

Theorem (Darmon-Merel)

Let r = 2,3 and p be a prime. Suppose E is an elliptic curve
over Q such that pg, is reducible and pg, lies in the
normalizer of a Cartan subgroup of GLy(Fp). If p > 5, then E
has potentially good at all primes, except possibly p.

In particular, if f has complex multiplication, then we cannot
have pg, = pyp if E satisfies the conditions above. This was
used to resolve the equations xP + y? = 2" for r = 2, 3.

The trivial solution £(1,—1) gives rise to a Frey curve E with
complex multiplication.
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Theorem (Ellenberg)

Let K be an imaginary quadratic field and d a square-free
integer. There ewists an effective constant My, 4 such that, for
all primes p > Mk q, and all Q-curves E over K of degree d,
either

e the representation Ppg, is surjective, or
e E has potentially good reduction at all primes not dividing
6.

This result was used to resolve the equation z? + y* = 2P.

The trivial solutions £(1,0) and £(0, 1) give rise to Frey
Q-curves with complex multiplication.
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Types of trivial solutions

We distinguish between two types of ‘trivial’ solutions.
@ Trivial solutions that persist for every exponent p: For
example, (1)P + (—1)? = 0" for the equation z? + yP = 2.
® Trivial solutions that do not persist for every exponent p:
For example, 13 + 23 = 32 for the equation 23 + y3 = 2.

In addition, a trivial solution may behaved in the following two
ways with respect to a Frey curve E:
a The trivial solution gives rise to a valid Frey curve E at the
Serre level of pg .
b The trivial solution does not give rise to a valid Frey curve
E at the Serre level of pg .
Case la presents the biggest obstacle because it requires a
global method to distinguish Galois representations which is
uniform in p.

Aside from the elliptic curve case, no such global methods are
known.
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This is due to the lack of efficient but conceptual methods to
determine rational points on curves, of which Mazur’s method
is the only known example.

The curves of interest in Darmon’s program are almost always
associated to non-congruence subgroups.

Even in the elliptic curve case, we do not have a complete
answer.

Conjecture (Serre)

There is a absolute constant ¢ such that if p > c and E is an
elliptic curve over Q without CM, then pg, does not have image
contained in the normalizer of a non-split Cartan subgroup.

Conjecture (Frey-Mazur)

There is a absolute constant ¢ such that if p > ¢ and E,E' are
elliptic curves over Q, such that ppy, = pgrp, then E and E' are
1sogenous over Q.
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Before we eliminate a form, we need to compute it ...

Currently, the modular method requires a computation of all
modular forms at the Serre level N.

The implemented algorithms of Stein, Dembélé, and Voight
have allowed such computations to be made for classical and
Hilbert modular forms.

However, in the case of Hilbert modular forms, one quickly
reaches computational limits.

For example, in considering the equation x7 + " = 32P, Freitas
encountered the need for computations of spaces of Hilbert
modular forms of dimension 10753.
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The Multi-Frey approach

In the early days, it was noted that some Fermat type equations
had more than one Frey curve for which one could apply the
modular method.

Siksek coined the term ‘multi-Frey’ to mean using more than
one Frey curve in the modular method simultaneously.

For example, in the local method that compares traces, we can
impose the condition aq(E;) = aq(f) (mod p) for every Frey
curve F; that we have available.

There is growing evidence that the multi-Frey technique is quite
powerful, provided we have a sufficiently ‘rich’ set of Frey
curves at our disposal.
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We illustrate the multi-Frey approach by considering the
equation
z° +y° = 327 (1)

As we saw, there are three Frey elliptic curves for this equation
which we can attach to a non-trivial primitive solution (a, b, c).

W =Wy :y? =2° — 5(a® + b*)2? + 5¢5(a, b)x,
E=Eu.:y> =234 2(a+ b)a® — @s(a,b)x
F=Fu:y*=2"+2(a—b)2? + (—3(w — @)/10 + 1/2) ¢5(a, b)x

(a,b,c) is non-trivial iff abc # 0.

(a, b, c) is primitive iff (a,b,c) = 1.

Imin Chen On the generalized Fermat equation



The multi-Frey technique in action ...

©® W is used to prove va(a) = 1 and the result for p < 107.
® E is used to prove 5 | a +b.

® We now assume vz(a) =1, p > 10" and 5| a + b.

@ Under these assumptions, pry = ppy _y p @ X-

® However, we know vy(a) = 1, but this is not satisfied by
the trivial solution (1, —1).

® An image of inertia argument is used to distinguish pr,
and PF_1,p @ X-

Imin Chen On the generalized Fermat equation



Theorem (Billerey-Chen-Dieulefait-Freitas)

For every integer n > 2, the equation x® + 1° = 32" has no
non-trivial primitive solutions.

The multi-Frey method is used several times in the proof to
refine the bounds on p (irreducibility and elimination steps) and
reduce the Serre levels (modularity step).

For the exponents p = 2,3, 5, we regard (1) as an equation of
signature (p, p,2), (p,p,3), (p,p,p), respectively.

The case z° 4 y° = 32° is due to L. Dirichlet.
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Current approaches

Generalize the modular method to work with hypergeometric
abelian varieties

C’;N;i’j’k] sy =2 (1 - 2) (1 - ),

which can be used to realize Frey representations explicitly.

This would enlarge the library of Frey abelian varieties at our
disposal.
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The modular method has so far as remained within the realm of
abelian varieties of GLo-type. But now we have the tantalizing:

Theorem (Scholze)

Let p be a prime and let g be a Hecke eigenclass in
HY(T\ A, Z/vZ).

Then there exists a continuous semi-simple Galois
representation

Pg : Gal(@/ Q) — GLn(Fp)

which is associated to g in the sense that the characteristic
polynomial of pg(Froby) has coefficients ag; given by the
eigenvalues of the Hecke operators Tp; on g.
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Fundamental challenges

@ Find a universal Frey mechanism for 2P + y? = 2" to deal
with three varying exponents.

® Eliminate the elimination step so no computation of
automorphic forms is needed.

® Prove a Mazur-type result applicable to Frey abelian
varieties or provide a trick to avoid having to prove it in
full generality.
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