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Modularity of Elliptic Curves

Theorem (Modularity Theorem - Wiles 1994, BCDT 2000)

For an elliptic curve E/Q of conductor N, there exists a cusp form
f of weight 2 and level N such that

L(E , s) = L(f , s).

(For a complete story of the modularity theorem and Fermat’s last
theorem, see for example “Modular Forms and Fermats Last
Theorem” by Cornell, Silverman, and Stevens.)
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Cusp Forms

In this theorem, f is a cusp form for the Hecke’s subgroup

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) | c ≡ 0 (mod N)

}
.

Hence,
f : Γ0(N)\H→ C.

N is called the level of such a modular form.

Also, f can be viewed as a function on a double coset space

f : Γ0(N)\SL2(R)/SO2(R)→ C

where, SL2 is the special linear group and SO2 is the special
othogonal group.
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Automorphic Representations on GL2(AQ)

Using strong approximation theorem one may convert f to an
automorphic representation φf of GL2(AQ):

φf : ZAQGL2(Q)\GL2(AQ)/K∞ ×
∏
p

KN
p → C,

with trivial central character, where

ZAQ is the center of GL2(AQ)

K∞ = GO2(R)

KN
p =

{[
a b
c d

]
∈ GL2(Zp) | c ≡ 0 (mod N)

}
.
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Generalization to Abeian Varieties

For abelian varieties, a generalization of such a modularity theorem
is attributed to the Langlands program:

For an abelian variety A/Q of dimension n there exists an
automorphic representation φ on GSpin2n+1 such that

L(A, s) = L(φ, s).
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Gross’ Refinement of This Conjecture

Gross has a refinement of this conjecture for a special case:

Conjecture (Gross, 2015)

Let A/Q be an abelian variety of dimension n with EndQ(A) = Z.
Then there exists an automorphic representation on the split
GSpin2n+1(AQ),

φ : GSpin2n+1(Q)\GSpin2n+1(AQ)/K∞ ×
∏
p

KN
p → C,

with explicit wieght and level, such that

L(A, s) = L(φ, s).

See “On the Langlands correspondence for symplectic motives”,
Gross, 2015.
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Gross’ Refinement to This Conjecture

In that article, Gross works with SO2n+1 instead of GSpin2n+1.

In fact, by “renormalizing”, one may assume that φ lives on
SO2n+1:

Conjecture (Gross, 2015)

Let A/Q be an abelian variety of dimension n with EndQ(A) = Z.
Then there exists an automorphic representation on the split
SO2n+1(AQ),

φ : SO2n+1(Q)\SO2n+1(AQ)/K∞ ×
∏
p

K0(pm)→ C,

with explicit wieght and level, such that

L(A, s) = L(φ, s).
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Split SO2n+1 and GSpin2n+1

Gross’ conjecture addresses the special orthogonal group SO(Λ) for
the Z-lattice

Λ = 〈a1, . . . , an, c, bn, . . . , b1〉

with bilinear form (−,−) with

(ai , bi ) = 1, (c , c) = 2,

and all other inner products equal to zero.

The corresponding GSpin group is the group satisfying the short
exact sequence

1→ GL1 → GSpin(Λ)→ SO(Λ)→ 1.

It is a group of type Bn whose “derived” subgroup Spin(Λ) is the
double cover of SO(Λ).
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The Level as a Group Scheme

Let N ∈ N. Let Λ(N) be the sublattice spanned by the vectors

{a1, . . . , an,Nc ,Nbn, . . . ,Nb1}

over Z. The appropriate bilinear form on this sublattice is
(−,−)/N.

Gross determines the “level” of the automorphic representation φ
as a group scheme K0(N):

Proposition (Gross, 2015)

There exists a group scheme K0(N)/Z with generic fiber
isomorphic to SO2n+1/Q and special fiber at p isomorphic to
SO2n+1/Fp if p - N and SO2n/Fp if p | N.
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Special Cases

When n = 1, SO3
∼= SL2 and K0(N) is conjugate to

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) | c ≡ 0 (mod N)

}
.

When n = 2, SO5
∼= PGSp4 and K0(N) is conjugate to the

“paramodular subgroups” defined by Roberts and Schmidt
(see “Local newforms for GSp4” by Roberts and Schmidt).
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My PhD Project So Far

In my thesis, I have used Gross’ construction to determine the
corresponding level for GSpin(Λ):

Proposition (S.)

There exists a group scheme G = G (Λ(N))/Z with generic fiber
GQ ∼= GSpin2n+1/Q and special fiber GFp

∼= GSpin2n+1/Fp if
p - N and GFp

∼= GSpin2n/Fp if p | N that satisfies the short exact
sequence

1→ GL1/Z→ G/Z→ K0(N)/Z→ 1.
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A Cusp form

Gross gives an explicit recipe for constructing a global cusp form
F , made from a tensor product of local cusp forms:

F : G (Q)\GSpin2n+1(AQ)/K∞ ×
∏
p

G (Zp)→ C.

By strong approximation, F is completely determined by restricting
to its archimedian component

F∞ : G (Q)\GSpin2n+1(R)/K∞ → C.
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My Future Work

1 Determine K∞: Gross has also addressed the weight K∞ of
the automorphic representation φ for SO2n+1 explicitly. What
is the corresponding weight for GSpin2n+1?

2 Gross’ work is only focused on the case of trivial central
character for the automorphic representation φ. What if we
had a nontrivial central character? In other words, I am
interested in finding a class of GSpin automorphic
representations with an arbitrary central character whose
restriction to the trivial central character is the work of Gross.
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Motivations

Cunningham and Dembélé have recently used lifts of Hilbert
modular forms to general odd spin groups to construct nontrivial
examples of abelian varieties that satisfy Gross’ conjecture:

f
Arthur-Clozel−−−−−−−−→ π′ on GL2n

Shahidi-et al.−−−−−−−−→ π′ descends to GSpin2n+1.
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Thank You!
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