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The blockwise Alperin weight conjecture

For a finite group G and a prime £, an /-weight means a pair
(R, ), where R is an (-subgroup of G and ¢ € Irr(Ng(R)) with
R < Ker ¢ of defect zero viewed as a character of Ng(R)/R.
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The blockwise Alperin weight conjecture

For a finite group G and a prime £, an /-weight means a pair

(R, ), where R is an (-subgroup of G and ¢ € Irr(Ng(R)) with
R < Ker ¢ of defect zero viewed as a character of Ng(R)/R.
When such a character ¢ exists, R is necessarily an ¢-radical
subgroup of G. For an ¢-block B of G, a weight (R, ¢) is called a
B-weight if bl (g) (©)¢ = B, where bly,(r)(¢) is the block of
N¢g(R) containing . Denote the set of all G-conjugacy classes of
B-weights by W(B).

. Conjecture ( L. Alperin, 1986) Let G be a finite group, £ a
prime and B an (-block of G, then |W(B)| = | IBr(B)].
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The inductive BAW condition

The blockwise Alperin weight conjecture has been reduced to the
simple groups.
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The inductive BAW condition

The blockwise Alperin weight conjecture has been reduced to the
simple groups.

Theorem (Spath, 2013)

Let G be a finite group and ¢ be a prime. Assume that every
nonabelian simple group S involved in G satisfies the inductive
BAW condition. Then the blockwise Alperin weight condition holds
for every £-block of GG.
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IBAWC: checked cases

@ Cyclic blocks (Koshitani, Spath, 2016);
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IBAWC: checked cases

@ Cyclic blocks (Koshitani, Spath, 2016);
@ Some sporadic simple groups (Breuer, 2016);
e Simple alternating groups (Malle, 2014);

@ Simple groups of Lie type and defining characteristics (Spath,
2013);

@ Suzuki groups and Ree groups (Malle, 2014);

@ Simple groups of Lie type G and 3D, (Cabanes, Spith, 2013,
Schulte, 2016);

@ Some cases for B,(2/) (Cabanes, Spith, 2013);
@ PSL3(q) (Schulte, 2015, Z. Feng, C. Li, Z. Li, 2017).
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Results for type A with
cyclic outer automorphism groups

Theorem (C. Li, Zhang)

Let p be a prime, ¢ = p/ and ¢ a prime different from p.
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Theorem (C. Li, Zhang)

Let p be a prime, ¢ = p/ and ¢ a prime different from p.
o lfn>2 (n,gq—1)=1,21f and
(n,q) ¢ {(2,2),(3,2),(4,2)}, then the inductive BAW
condition holds for every {-block of PSL,(q).
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Results for type A with
cyclic outer automorphism groups

Theorem (C. Li, Zhang)

Let p be a prime, ¢ = p/ and ¢ a prime different from p.
o lfn>2 (n,gq—1)=1,21f and
(n,q) ¢ {(2,2),(3,2),(4,2)}, then the inductive BAW
condition holds for every {-block of PSL,(q).
@ Ifn>3, (n,g+1)=1and (n,q) ¢ {(4,2),(6,2)}, then the
inductive BAW condition holds for every (-block of PSU,(q).
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Inductive BAW condition

Let £ be a prime, S a finite non-abelian simple group and X the
universal ¢'-covering group of S.
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say the inductive BAW condition holds for B if the following
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Inductive BAW condition

Let £ be a prime, S a finite non-abelian simple group and X the
universal ¢'-covering group of S. Let B be an ¢-block of X. We
say the inductive BAW condition holds for B if the following
statements hold:
o (Partitions) There exist subsets IBr(B|Q) C IBr(B) for every
£-radical subgroup @) of X with the following properties:
e IBr(B|Q)* = IBr(B|Q%) for every @ € Rad,(X) and
a¢€ Aut(X)B,
o IBr(B) = Ugerad, (x)/~x IBr(B|Q).
o (Bijections) For every @ € Rady(X) there exists a bijection
Q5 : IBr(B|Q) — dz(Nx(Q)/Q, B) such that
Q5 (9)* = QFa(¢") for every ¢ € IBr(B|Q) and
a € Aut(X)p.
@ (Normally Embedded Conditions).

o If B is of ¢-defect zero, then Qﬁ}(w) = 1) for every
Y € Irr(B), and ¢ = ¢’ for every ¢ € IBr(B|{1}).



Proof

Under our assumptions,

@ The outer automorphism group of
X = SL,(£q) = PSL,,(+£q) is cyclic, then it suffices to prove
the first two part of the inductive BAW condition, which
means an Aut(X)-equivariant bijection between irreducible
Brauer characters and weights.
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Proof

Under our assumptions,

@ The outer automorphism group of
X = SL,(£q) = PSL,,(+£q) is cyclic, then it suffices to prove
the first two part of the inductive BAW condition, which
means an Aut(X)-equivariant bijection between irreducible
Brauer characters and weights.

@ Since GL,(£q) = SL,(£q) x Z(GL,(£q)), it suffices to
consider the group G' = GL,(%q).

@ By the works of Alperin, Fong and An, we already have a
bijection between irreducible Brauer characters and weights of

GL,,(£q), then it suffices to consider the actions of
automorphisms.
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Proof: actions on ordinary characters

Jordan decomposition of characters: the irreducible characters
of GL,,(£q) are in bijection with the GL,,(%¢)-conjugacy classes
of pairs (s, i), where s is a semisimple element of GL,,(%¢) and

o= ]I pr with pr B mr(s).
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Proof: actions on ordinary characters

Jordan decomposition of characters: the irreducible characters
of GL,,(%q) are in bijection with the GL,,(£¢)-conjugacy classes
of pairs (s, i), where s is a semisimple element of GL,,(%¢) and
p = [Ip pr with ur = mp(s). The characters corresponding to
(1, ) are called unipotent characters.

The automorphisms of GL,,(£q) act trivially on the unipotent
characters of GL,,(£q).

If x is a character of GL,,(£q) corresponding to (s, ) and o is an

(e

automorphism of GLy,(£q), then x? corresponds to (o(s),
where (? )or = pr.

1)
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Proof: actions on Brauer characters

o &(GL,(£q),?) is a basic set of IBr(G), where

E(GLn(£q), ) = | &(GLa(%q),s).

seGF

ss, 0!
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@ Since the decomposition matrix corresponding to
E(GL,,(£q), ') is unitriangular, there is an
Aut(G)-equivariant block-preserving bijection between
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Proof: actions on Brauer characters

o &(GL,(£q),?) is a basic set of IBr(G), where

E(GLn(£q), ) = | &(GLa(%q),s).

seGF

ss, 0!

@ The above basic set is Aut(G)-stable.

@ Since the decomposition matrix corresponding to
E(GL,,(£q), ') is unitriangular, there is an
Aut(G)-equivariant block-preserving bijection between
E(GL,(£q), ) and IBr(G).

@ Then the actions of automorphisms on irreducible Brauer
characters are just “permutations of elementary divisors” .
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Proof: actions on weights

@ Let B be a block of GL,,(+q) with label (s, ) (Fong,
Srinivasan, Broué), then we can label all the B-weights by
triples (s, k, K), where K = [[ Kr with Kt a collection of
{-cores.
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Proof: actions on weights

@ Let B be a block of GL,,(+q) with label (s, ) (Fong,
Srinivasan, Broué), then we can label all the B-weights by
triples (s, k, K), where K = [[ Kr with Kt a collection of
{-cores.

@ Again, the actions of automorphisms on irreducible characters
are just “permutations of elementary divisors”.

@ Thus we can prove our theorem.
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Definition of K

@ Let (R, p) be a weight, then p = Ind]NVgEge 1, where

0 € Irr(C(R)R) of defect zero as a character of
Ca(R)R/R, ¢ € Irr(Ng(R)g|0) of defect zero as a character
of Ng(R)o/R.
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@ Let (R, p) be a weight, then p = Ind]NVgEge 1, where
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Definition of K

@ Let (R, p) be a weight, then p = Ind]NVgEge 1, where
0 € Irr(C(R)R) of defect zero as a character of
Ca(R)R/R, ¢ € Irr(Ng(R)g|0) of defect zero as a character

of Na(R)g/R.
@ R = RoR4 and all constructions can be decomposed
accordingly.
tr.s,i tr.5,i
o 0 =]lrs, GFF,Z;%’ Ri=1lrs; Rrr,afz'-
o Ni(04)= HF,6,i NF,J,in,é,i) ¢ G(tF,J,i% Yt = HI‘,&,@' Vr.si
where

_ NF(S'L(eF(szZCtF(S'L tl"ﬁz]
wr,(;,l - IndNF 61(91" 8,1 ZH 6 tF 52] er 6717‘7 H¢HF,5,i,j
J
e Finally, Kt :  rgs;;— Kr6,,j
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THANK YOU!



