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There is ABC.....

ABC Rejection algorithm

For l = 1, · · · ,N do
Repeat

Generate θ ′ from the prior distribution π(·)
Generate z from the likelihood f (· | θ ′)

Until ρ(η(z),η(y)) < ε

Set θl = θ ′

End For
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...and ABC

Bayesian synthetic likelihood [Drovandi et al., 2015, Price et al., 2016]

πn(θ |sobs) ∝ N (sobs ; µn(θ),Σn(θ))π(θ)

Bayesian empirical likelihood [Mengersen et al., 2013]

π(θ |y) ∝ LEL(θ)π(θ)

Bayesian bootstrap likelihood [Zhu et al., 2015]

π(θ |y) ∝ LBL(θ)π(θ)
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Empirical Likelihood

Empirical likelihood is a way of producing a nonparametric likelihood for a
quantity of interest [Owen, 2001]. Schennach [2005] proposes a Bayesian
exponentially tilted empirical likelihood.

Consider a given set of generalized moment conditions

EF (h(X ,ϕ)) = 0,

where h(·) is a known function, and ϕ is the quantity of interest.

LBEL(ϕ;x) is defined as the system of weigths (p1, · · · ,pn) obtained as solution of

max
(p1,...,pn)

n

∑
i=1

(−pi logpi )

under constraints

0≤ pi ≤ 1,
n

∑
i=1

pi = 1
n

∑
i=1

h(xi ,ϕ)pi = 0

[Owen’s maximisation problem was max(p1,...,pn) ∏
n
i=1 pi .]
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The Bayesian use of the empirical likelihood I

We are interested in a function ϕ and in its posterior

π(φ |y) ∝

∫
N
p(y |ν ,φ)π(ν |φ)π(φ)dν

or

π(φ |y) ∝ lim
N→∞

∫
N
p(y |ξN ,φ)π(ξN |φ)π(φ)dξN

Then the distribution C can be represented as

C = (ϕ,C ∗)

where C ∗ belongs to an infinite dimensional metric space (H,dH).

LBEL may be seen as the derivation of the integrated likelihood for φ

L
(λ)
BEL(φ ;y) =

∫
Ξ
L(φ ,ξ ;y)dΠ(ξ )

where Π(ξ ) is the prior process implicitly induced by LBEL.
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The Bayesian use of the empirical likelihood II
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Why copulas?
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Figure: The Clayton copula exhibits greater dependence in the negative tail
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Sklar’s Theorem

A copula model is a way of representing the joint distribution of a random
vector X = (X1, . . . ,Xd). Given an d-variate cumulative distribution
function (CDF) F, it is possible to show [Sklar, 1959] that there always
exists an d-variate function C : [0,1]d → [0,1], such that

F(x1, . . . ,xd) = C (F1(x1), . . . ,Fd(xd))

where Fj is the marginal CDF of Xj .
Therefore, in case that the multivariate distribution has a density f, and
this is available, it holds further that

f(x1, . . . ,xd) = c(F1(x1), . . . ,Fd(xd)) · f1(x1) · · · fd(xd)
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Example of copula functions

Clayton copula: Cθ (u,v) = [max{u−θ + v−θ −1;0}]− 1
θ for θ ∈ [−1,1)\{0}

Gumbel copula: Cθ (u,v) = exp[−((− log(u)θ + (− log(v))θ ))
1
θ ] for θ ∈ [1,∞]

Frank copula Cθ (u,v) =− 1
θ

log
[
1 + (exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1

]
for θ ∈ R\0
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Figure: Simulations from different copula functions
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Estimation methods for copula models

Frequentist methods:

Inference from the margins [Joe, 2015]

method of moments [Oh and Patton, 2013]

semiparametric approach [Genest et al., 1995]

Bayesian methods: [Smith, 2013]

multivariate discrete data [Smith and Khaled, 2012]

conditional copulae [Craiu and Sabeti, 2012]

vine-copulae [Min and Czado, 2010]

nonparametric approach [Wu et al., 2014]
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Likelihood function

The likelihood function is complicated!

In the continuous case, the density of a multivariate distribution, in its
copula representation is

f (x |λ ,θ) = c(u;θ)
d

∏
j=1

fj(xj |λj)

where u = (u1, · · · ,ud) = (F1(x1;λ1), · · · ,Fd(xd ;λd)).

The posterior distribution for (θ ,λ ) is

π(θ ,λ |x) ∝ π(θ ,λ )
n

∏
i=1

[
c(ui ;θ)

d

∏
j=1

f (xij ;λj)

]
.

Remark: the likelihood function is not separable in λ1, · · · ,λd and θ because ui depends

on the marginal parameter λ .
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A semiparametric approach

Why a semiparametric approach?

if the interest is in a functional of the dependence, the likelihood
function for it may be very complicated

Example: Clayton copula

likelihood:  L(θ ;u,v) = ∏
n
i=1(θ + 1)(uivi )

−(θ+1)(u−θ

i + v−θ

i −1)−
2θ+1

θ

functionals: τ = θ

θ+2 and λL = 2−
1
θ but ρ = · · ·

methods of selection of the copula may be unreliable

In this situation we derive an approximated posterior distribution

π(φ |x) ∝ π(φ)LBEL(φ ;x)
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ABSCop: STEP 1

ABSCop Step 1: Marginal Estimation

Given a sample X = (X1,X2, · · · ,Xd) with joint cdf FX (x) and marginal
cdf’s F1(x1;λ1), · · · ,Fd(xd ;λd)

For j = 1, · · · ,d

Derive a posterior sample for λj : (λ 1
j , · · · ,λ

Sj
j ) approximating

the marginal posterior π(λj |xj)

End For

C. Grazian (Oxford University) Approximate Bayes for copulas 21 February 2017 13 / 41



ABSCop: STEP 2

ABSCop Step 2: Joint Estimation

For b = 1, · · · ,B

Draw φ (b) ∼ π(φ)

Sample one value λ
sj from each marginal posterior sample:

λ ′ = (λ
(s1)
1 , · · · ,λ (sd )

d )

Derive a matrix of uniformly distributed pseudo-data uij = Fj (xij ;λ
(sj )

j )

u′ =


u

(s1)
11 u

(s2)
12 . . . u

(sd )
1d

u
(s1)
21 u

(s2)
22 . . . u

(sd )
2d

. . . . . . u
(sj )

ij . . .

u
(s1)
n1 u

(s2)
n2 . . . u

(sd )
nd

 .

Compute LBEL(ϕ(b);u′) = ωb

End For
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Validation: nonparametric estimation of the marginals

Suppose (X11,X21, · · · ,Xd1), · · · ,(X1n,X2n, · · · ,Xdn) are independent
random vectors with distribution function F and marginal F1,F2, · · · ,Fd .

The empirical estimator of the copula function
C (u1,u2, · · · ,un) = F (F−1

1 (u1),F−1
2 (u2), · · · ,F−1

d (ud)) is

Cn(u1,u2, · · · ,ud) = Fn(F−1
1n (u1),F−1

2n (u2), · · · ,F−1
dn (ud)),

where Fn,F1n,F2n, · · · ,Fdn are the joint and marginal empirical distribution
functions of the observations.

The empirical copula process is defined as

Cn =
√
n(Cn−C )

and if the j-th first order partial derivative exists and is continous on
Vd ,j = {u ∈ [0,1]d : 0 < uj < 1}, then Cn converges weakly to the Gaussian
process {GC (u1,u2, · · · ,ud),0 < u1,u2, · · · ,ud < 1}in `∞([0,1]d).
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ABSCop algorithm

Goal: estimating a functional of the dependence (Spearman’s ρ, Kendall’s
τ, tail dependence coefficients λL and λU , etc.)

Select a quantity of interest φ and a prior π(φ)

ρ = 12
∫ 1

0

∫ 1

0
C (uj ,uh)dujduh−3.

with π(ρ)∼U (−1,1).

Select a (nonparametric) estimators φn

ρn =
1

n

n

∑
i=1

(
12

n2−1
RiQi

)
−3

n+ 1

n−1
,

Compute the empirical likelihood of φ based on its estimate

Derive via simulation the posterior distribution π(φ ;x)
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Clayton and Frank, d = 2
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Figure: Comparison between frequentist (blue) and Bayesian estimates (green). 20 out

of 500 experiments with simulations from a Clayton copula (above) and a Frank copula

(below) (n = 1000).
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What happens when ρ → 1

Borkowf [2002] shows that the asymptotic variance of ρn is

σ
2(ρn) = 144(−9θ

2
1 + θ2 + 2θ3 + 2θ4 + 2θ5), (1)

where

θ1 = E[F1(X1)F2(Y1)]

θ2 = E[(1−F1(X1))2(1−F2(Y1))2]

θ3 = E[(1−F (X1,Y2))(1−F (X2))(1−F (Y1))]

θ4 = E[(1−F1(max{X1,X2}))(1−F2(Y1))(1−F2(Y2))]

θ5 = E[(1−F1(X1))(1−F1(X2))(1−F2(max{Y1,Y2}))].

Consistent estimates of the above quantities are available in Genest &
Favre [2007].
However, in the case of perfect rank agreement, when plugging-in the
sample estimates of the θj ’s into expression (1), one gets a negative
number.
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Intervals length for d = 2

Table: Simulations from different copulas: average length and empirical coverage
based of the intervals obtained both via frequentist and Bayesian methods, based
on 500 repetitions of the experiment

Ave. Length Coverage
Clayton (ρ = 0.5) Freq. 0.2664 0.998

Bayes. 0.2597 1.000

Frank (ρ = 0.5) Freq. 0.3172 1.000
Bayes. 0.2735 1.000

Gumbel (ρ = 0.68) Freq. - -
Bayes. 0.2966 1.000

Gaussian (ρ = 0.8) Freq. - -
Bayes. 0.2931 1.000
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Comparison with parametric methods
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Figure: Bayesian point estimates (points) and credible intervals for 20 out of 500
experiments with data from a Gumbel copula with θ = 2, obtained by specifying a
Clayton model (orange), a Frank model (blue) and a Gumbel model (green) or by using
our semiparametric approach (black).
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Tail dependence I

The upper and lower tail dependence indices are defined

λU = lim
u→1

Pr{Xi > F−1
i (u)|Xj > F−1

j (u)}

λL = lim
v→1

Pr{Xi ≤ F−1
i (u)|Xj ≤ F−1

j (u)}

but may be rewritten in terms of copulas

λU = lim
v→1

1−2v −C (v ,v)

1−v
, λL = lim

v→0

C (v ,v)

v
.

that may be estimated by [Joe et al., 1992]

λ̂U = 2− n

k

{
1− Ĉn

(
n−k

n
,
n−k

n

)}
, λ̂L =

n

k
Ĉn

(
k

n
,
k

n

)
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Tail dependence II

Schmidt and Stadtmüller [2006] prove

strong consistency

asymptotic normality for these estimators.

derive the asymptotic variance
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Tail dependence
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Figure: Comparison between frequentist (blue) and Bayesian (green) estimates for λU

(left) and λL (right). 20 out of 500 simulations from a Clayton copula with θ = 1.076

(n = 1000). The true values are λ true
U = 0 and λ true

L = 2−
1
θ (red lines).
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Multivariate Analysis I

Goal: estimating a functional of the dependence (Spearman’s ρ, Kendall’s
τ, tail dependence coefficients λL and λU , etc.)

Select a quantity of interest φ and a prior π(φ)

ρ1 =

∫
[0,1]d (C (u)−Π(u))du∫
[0,1]d (M(u)−Π(u))du

= h(d)

{
2d
∫

[0,1]d
C (u)du−1

}
,

where h(d) = (d + 1)/{2d − (d + 1)} or

ρ2 = h(d)

{
2d
∫

[0,1]d
Π(u)dC (u)−1

}
.
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Multivariate Analysis II

Select a (nonparametric) estimators φn

ρ̂1n = h(d)

{
2d
∫

[0,1]d
Ĉn(u)du−1

}
= h(d)

{
2d

n

n

∑
i=1

d

∏
j=1

(1− Ûij)−1

}

ρ̂2n = h(d)

{
2d
∫

[0,1]d
Π(u)dĈn(u)−1

}
= h(d)

{
2d

n

n

∑
i=1

d

∏
j=1

Ûij −1

}
.

Asymptotic properties of these estimators are explored and assessed in
Schmid and Schmidt [2007]. In particular it is known that

√
n(ρ̂kn−ρk)

·∼N (0,σ2
k ), k = 1,2.
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Multivariate ρ
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Figure: Comparison between frequentist (blue) and Bayesian (green) estimates of
ρ1 (left) and ρ2 (right). 20 out of 500 experiments with simulation from a
Clayton copula with θ = 1.076 (n = 1000).
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Dimension d ≥ 2

Table: Average lengths of the confidence intervals (based on a bootstrap
estimator of the variance of the estimates) and of the corresponding Bayesian
credible intervals obtained in 50 repetitions of each experiment of dimension d by
simulating data from a Clayton copula with θ = 1.076.

ρ̂1
freq

ρ̂2
freq

ρ̂1
Bayes

ρ̂2
Bayes

d = 2 0.0032 0.0032 1.1933 1.1801
d = 3 0.0026 0.0026 1.0844 1.0853
d = 4 0.0026 0.0026 0.9495 0.9594
d = 5 0.0027 0.0027 0.8728 0.8914
d = 6 0.0027 0.0027 0.8211 0.8224
d = 7 0.0030 0.0030 0.8022 0.7882
d = 8 0.0031 0.0031 0.7828 0.7541
d = 9 0.0032 0.0032 0.7680 0.7492
d = 10 0.0035 0.0035 0.7558 0.7439
d = 25 0.0047 0.0047 0.7462 0.7480
d = 50 0.0073 0.0073 0.7299 0.7634
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GARCH(1,1) for Student-t innovation I

Real dataset containing the log-returns FTSE-MIB of five Italian financial
institutes

Monte dei Paschi di Siena

Banco Popolare

Unicredit

Intesa-Sanpaolo

Mediobanca

by assuming that the log-returns for each bank may be modelled as a
generalized autoregressive conditional heteroscedastic model with
parameters (1,1) and Student-t innovations.
Data refers to weekdays from 01/07/2013 to 30/06/2014 available on the
web-page https://it.finance.yahoo.com.
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GARCH(1,1) for Student-t innovation II

For t = 1, . . . ,T ,

yt = εt

√
ν−2

ν
ωtht ;

ht = α0 + α1y
2
t−1 + βht−1;

εt ∼N (0,1);

ωt ∼ IG
(

ν

2
,
ν

2

)
,

where α0 > 0, α1,β >= 0, ν > 2 and IG (a,b) denotes the invert gamma
distribution with shape parameter a and scale parameter b.
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Log-returns
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Figure: Log-returns of Monte dei Paschi di Siena (BMPS), Banco Popolare (BP),
Unicredit (UCG), Intesa-Sanpaolo (ISP) and Mediobanca (MB) from 01/07/2013
to 30/06/2014, available on the web-page https://it.finance.yahoo.com
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Posterior Distribution of ρ

Figure: Approximation of the posterior distribution of the Spearman’s ρ for the
log-returns of the investments of five Italian institutes based on 10,000
simulations.
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Quantile distributions I

The g -and-k distribution is a popular example of a quantile distribution.
This is a transformation of the standard normal distribution function, as
follows:

Q(z(p);θ) = a+b

(
1 + c

1− exp(−gz(p))

1 + exp(−gz(p))

)
(1 + z(p)2)kz(p)

where θ = (a,b,g ,k) and c is commonly set fixed at 0.8.
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Quantile distributions II
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Figure: Spearman’s ρ approximated posterior distribution by assuming marginal
quantile distributions.
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Posterior Distribution of λL and λU
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Figure: Approximation of the posterior distribution of the Spearman’s ρ for the
log-returns of the investments of five Italian institutes based on 10,000
simulations.
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Conditional copulas

A biased estimation of the conditional ρ is

ρ̂n(x) = 12
n

∑
i=1

wni (x ,hn)(1− Û1i )(1− Û2i )−3

bootstrap likelihood
[Zhu et al., 2015]

bootstrap (unbiased) estimator
[Lemyre & Quessy, 2016]
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Figure: Simulations from the conditional
Clayton copula, true function ρ in black,
Bayesian estimates in red, frequentist in
blue.
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Conclusions

The method presents some advantages and disadvantages.

ease of elicitation

robustness in terms of model miss-specification

generality

in practical applications, there are often available only asymptotically
unbiased estimators

inefficient with respect to parametric methods (under the assumption
that the chosen model is the true one)
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Thank you for your attention!
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