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Statistical & Dynamical Perspectives Complement Each Other
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Brain Dynamics and Statistics: Simulation versus Data

Broadly speaking, statistical methods extract information
about systems in which there is some form of variability.
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Brain Dynamics and Statistics: Simulation versus Data

Broadly speaking, statistical methods extract information
about systems in which there is some form of variability.

The presumed locus and nature of the variability influences the
conceptual and technical foundations of one’s investigation.

Is the variability intrinsically

or extrinsically generated?
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Broadly speaking, statistical methods extract information
about systems in which there is some form of variability.

The presumed locus and nature of the variability influences the
conceptual and technical foundations of one’s investigation.
Is the variability intrinsically

or extrinsically generated? The available observables are equally important:

Spike times or voltage fluctuations?
fMRI or calcium imaging?
Single or multiunit recordings?
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Brain Dynamics and Statistics: Simulation versus Data

Broadly speaking, statistical methods extract information
about systems in which there is some form of variability.

The presumed locus and nature of the variability influences the
conceptual and technical foundations of one’s investigation.
Is the variability intrinsically

or extrinsically generated? The available observables are equally important:

Spike times or voltage fluctuations?
fMRI or calcium imaging”?
Single or multiunit recordings?

fMRI: default mode network (spontaneous activity) versus task positive network.
Intrinsic or extrinsically generated variability?

fMRI data courtesy of Tony Jack (CWRU)
analysis courtesy of Roberto Galan (CWRU)

Noise in the brain ~ Peter Thomas ~ Case Western Reserve University ~ BIRS Workshop “Brain Dynamics and Statistics: Simulation versus Data” ~ 2/27/2017



Brain Dynamics and Statistics: Simulation versus Data

Broadly speaking, statistical methods extract information
about systems in which there is some form of variability.

The presumed locus and nature of the variability influences the
conceptual and technical foundations of one’s investigation.

Is the variability intrinsically

or extrinsically generated?

Phenomenological models: neuron as an input-output device.
% Locus of variability is the input ensemble.

Paninski, Liam. "Maximum likelihood estimation of
cascade point-process neural encoding models.”
Network: Computation in Neural Systems (2004)

Synapses
ey Brette, Romain, and Wulfram Gerstner. "Adaptive
= » exponential integrate-and-fire model as an effective

Cell body

et description of neuronal activity." J. Neurophys. (2005)

Axon
2 Wark, Barry, Adrienne Fairhall, and Fred Rieke.
P - ) L L
Signal flow Timescales of inference in visual adaptation.” Neuron
- (20009).
L—J\> Input
1= Kobayashi, Ryota, Yasuhiro Tsubo, and Shigeru
=P Output | ut
Shinomoto. "Made-to-order spiking neuron model

equipped with a multi-timescale adaptive threshold."

Image from http://www.aishack.in/tutorials/biological-neurons/ Frontiers in computational neuroscience (2009)
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Brain Dynamics and Statistics: Simulation versus Data

Broadly speaking, statistical methods extract information
about systems in which there is some form of variability.

The presumed locus and nature of the variability influences the

conceptual and technical foundations of one’s investigation.
Is the variability intrinsically
or extrinsically generated?

Sigworth’s nonstationary variance analysis.

5ms

(o

0 | 1 | | 1 | | | | | | | | J
36 7-2 10-8
/ (nA)

Open probability p(t) obeys a linear DE.

Number of open channels N (¢) ~ Binom( N, p(t)).
Current I(t) = N(t)g°(V — Eion).

e, E[It) =z = Ntotp(t)go(v — Eion).

S a1(t) =y = Nigep(t)(1 — p())(9°(V — Eion))*.
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Purkinje cell spontaneous activity recorded in slice, courtesy D. Friel. ISI coefficient of variation approx 10%.
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Data analysis: Estimate unknown conductances and kinetics
from'voltage recordings. (Then build stochastic model.)
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Data analysis: Estimate unknown conductances and kinetics
from'voltage recordings. (Then build stochastic model.)

Deterministic Hodgkin-Huxley Equations

dv
C— =Iapp(t) — Gleak(V — Eleak)

dt

— gKn4(v — Eg) — gNamSh(v — ENa)
d
— =ax(v)(1 — &) — Bx(v)z,

for x €{m,n,h}
am(v) =0.1(v + 40) /(1 — exp(—(v + 40)/10))
Bm(v) =4exp(—(v + 65)/18)

et cetera
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Data analysis: Estimate unknown conductances and kinetics
from voltage recordings. (Then build stochastic model.)

The model structure — e.g. gating variable network topology — may not be identifiable.

Meng, Liang, Mark A. Kramer, and Uri T. Eden. "A sequential Monte Carlo approach to estimate biophysical neural models
from spikes." Journal of neural engineering 8.6 (2011): 065006.

Milescu, Lorin S., Gustav Akk, and Frederick Sachs. "Maximum likelihood estimation of ion channel kinetics from
macroscopic currents." Biophysical journal 88.4 (2005): 2494-2515.

Fink, Martin, and Denis Noble. "Markov models for ion channels: versatility versus identifiability and speed." Philosophical

Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 367.1896 (2009):
2161-2179.

Given the structure of the model, not all parameters are identifiable.

Walch, Olivia J., and Marisa C. Eisenberg. "Parameter identifiability and identifiable combinations in generalized Hodgkin—
Huxley models." Neurocomputing 199 (2016): 137-143.

Bahr, Tyler, and Mark Transtrum. "Parameter ldentifiability in the Hodgkin-Huxley Model of a Single Neuron." Bulletin of the
American Physical Society 60 (2015).

Csercsik, David, Katalin M. Hangos, and Gabor Szederkeényi. "ldentifiability analysis and parameter estimation of a single

Hodgkin—Huxley type voltage dependent ion channel under voltage step measurement conditions." Neurocomputing 77.1
(2012): 178-188.
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Parameter Estimation Approaches for Conductance Based Models

* Sequential Monte Carlo or particle filtering methods (Meng et al 2011; Meng et
al 2014; Huys and Paninski 2009)

* “Data assimilation” through virtual coupling of data and model (Abarbanel et
al 2009; Abarbanel 2013)

* Combined statistical and geometric methods for periodic orbits with timescale
separation, i.e. bursting activity (Tien and Guckenheimer 2008).

* State space / current based parameter estimation (Lepora et al 2012, Vavoulis
et al 2012)

* Kalman filter, extended Kalman filter, unscented Kalman filter; as applied to
parameter estimation for ion channel / conductance based models. (cf monograph:
Law, Kody, Andrew Stuart, and Konstantinos Zygalakis. Data Assimilation.

Springer International Publishing, 2015. 1-23. Voss et al 2004 Chaos.

& monograph Data Assimilation (2016) by Asch, Bocquet, Nodet.).
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Statistical & Dynamical Perspectives Complement Each Other
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Remainder of the talk

Stochastic oscillations
Stochastic shielding

Closed-loop motor control
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|. On the Problem of Quantifying “Phase Resetting” in
Stochastic Neural Oscillators.

A. Inconsistencies in phase resetting analysis.
B. Spectral definition of oscillator “phase”.

C. Statistical definition of oscillator “phase”.
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Limit Cycles, Isochrons, and Phase Response Curves
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Izhikevich, Dynamical Systems in Neuroscience (2007)

* Oscillations are ubiquitous in neural systems.
* The “asymptotic phase” identifies points converging to a common trajectory.

" Phase response curves measure the shift in timing due to a stimulus.
*  PRCs allow analysis of synchronization & entrainment.
*  Experimental PRCs are measured via perturbation experiments.
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Reduced (planar) Hodgkin-Huxley model: Fitzhugh-Nagumo model (cf van der Pol oscillator):
nullclines, limit cycle, isochrons closeup of isochrons near slow manifold, equilibr. pt.
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Osinga & Moehlis, 2014 SIAM Dyn. Sys Landfield et al, 2014 Chaos

For a smooth, deterministic dynamical systems with a hyperbolic limit cycle,
the isochrons and infinitesimal phase response curves are well understood.

The classical picture can break down in several ways:

1. Limit cycle oscillator with nonsmooth dynamics (Park et al, submitted)
2. Near-heteroclinic oscillators (Shaw, Park, Chiel, Thomas, 2012 SIADS)
3. Stochastic “limit cycle” oscillator (Thomas & Lindner 2014 PRL)
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Limit Cycles, Isochrons, and Phase Response Curves
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Phase Response Curves

Cuoto et al measured the phase
response curve of Purkinje cells and
showed the PRC changes shape as a
function of firing rate, suggesting a shift
in computational properties in different
dynamical regimes.

(Couto, J., et al. "On the Firing Rate Dependency of
the Phase Response Curve of Rat Purkinje
Neurons." PLoS Comput Biol 11.3 (2015):
e1004112.)

Phase response is measured as the
shift in timing of the next spike, Tk+1,
relative to the average interspike
interval <T>, as a function of the phase
(t-Tk)/<T> at which a small stimulus is
applied.

Since some intervals are longer than
the mean interval, a stimulus can be
applied outside the range [0,1]
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et al. 2008

Phase Advance

Trial-to-trial phase response is
highly variable

Stiefel, Klaus M., Boris S. Gutkin, and
Terrence J. Sejnowski. "Cholinergic
neuromodulation changes phase response
curve shape and type in cortical pyramidal
neurons." PloS one 3.12 (2008): e3947-
e3947.

Ermentrout, G. B., Beverlin Il, B., Troyer, T.,
& Netoff, T. I. (2011). The variance of phase-
resetting curves. Journal of computational
neuroscience, 31(2), 185-197.

Netoff, Theoden, Michael A. Schwemmer,
and Timothy J. Lewis. "Experimentally
estimating phase response curves of
neurons: theoretical and practical issues.’
Phase response curves in neuroscience.
Springer New York, 2012. 95-129.
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Asymptotic phase is not well defined for stochastic oscillators.

* All initial conditions converge (as t -> infinity) to the same stationary density
* |sochrons may not be defined in the vanishing noise limit (e.g. heteroclinic systems)
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Asymptotic phase is not well defined for stochastic oscillators.

* All initial conditions converge (as t -> infinity) to the same stationary density
* |sochrons may not be defined in the vanishing noise limit (e.g. heteroclinic systems)
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What is the “phase” of a stochastic oscillator?

PRL 110, 204102 (2013) PHYSICAL REVIEW LETTERS

week ending
17 MAY 2013

Phase Description of Stochastic Oscillations

Justus T.C. Schwabedal® and Arkady Pikovsky

Department of Physics and Astronomy, Potsdam University, 14476 Potsdam, Germany

(Received 29 January 2013; published 13 May 2013)

PRL 113, 254101 (2014) PHYSICAL REVIEW LETTERS

week endin,

g
19 DECEMBER 2014
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Asymptotic Phase for Stochastic Oscillators

Peter J. Thomas

Bernstein Center for Computational Neuroscience, Humboldt University, 10115 Berlin, Germany
and Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University,
Cleveland, Ohio 44106, USA

Benjamin Lindner

Bernstein Center for Computational Neuroscience and Department of Physics, Humboldt University,
10115 Berlin, Germany
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Open question: Can the right definition of “phase” clarify the analysis of phase resetting for

stochastic oscillators?
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Spectral Asymptotic Phase

SDE: dX = A(X) dt + B(X)dW (Itd interpretation)
Define B= BBT. For t > s, density is:

oy, t | x,5) = diy PHX(t) € [y y + dy) | X(s) = x}
o

ap(y, t|x,s) = Ly[p] (forward operator)
__Zi(A-()( t|xs))lzz A (Bij(y)ply, t]x,s))
— I,a)/i i\Y)P\Y; ) 2i Ja)/la){j i\ Y JP\Y; ’

9,
— —p(y, t|x,s) = Ll[p] (backward operator)

2
=3 ()3P0 15:9) + 5 30 30 Byl 5 mply.x.9)
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Spectral Asymptotic Phase

L[P,] = AP, (forward eigenfunctions, discrete spectrum)

L[Q}] = AQ; (backward eigenfunctions, discrete spectrum)
/Q;(X)P)\/(X) dx = 6(N — \) (complete biorthogonal system)

A1 = p+ iw (slowest decaying eigenvalue is complex)
Py, (y) = v(y)e'?VY) (forward magnitude, phase)
Qx, (x) = u(x)e™ ™) (backward magnitude, phase).
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Average Isophase (Mean First Passage Times)

Mean first passage time T(x) from x to an absorbing boundary S,ps
LUT) = -1, T(x)=0,x€Saps, n-VT(x)=0,x € S

To establish the correct boundary conditions, we unwrap the oscillator.
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Alexander Cao, 2017 MS thesis (CWRU), joint with B. Lindner
Equivalently, we impose T(xT) = T(x~)+ T along a radial section.

In general, average isophase differs from spectral phase. Which gives a
better approach to synchrony, entrainment, and “phase response curves”
remains an open question.
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|l. Stochastic Shielding

|dentifying the most salient source of noise in a partially observed Markov model.
Joint work with Deena Schmidt (University of Nevada) & Roberto Galan (CWRU)

week ending

PRL 109, 118101 (2012) PHYSICAL REVIEW LETTERS 14 SEPTEMBER 2012

Stochastic-Shielding Approximation of Markov Chains and its Application to
Efficiently Simulate Random Ion-Channel Gating

Nicolaus T. Schmandt and Roberto F. Galan*
Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Ohio 44106-4975, USA
(Received 16 February 2012; published 11 September 2012)

Markov chains provide realistic models of numerous stochastic processes in nature. We demonstrate
that in any Markov chain, the change in occupation number in state A is correlated to the change in
occupation number in state B if and only if A and B are directly connected. This implies that if we are only
interested in state A, fluctuations in B may be replaced with their mean if state B is not directly connected
to A, which shortens computing time considerably. We show the accuracy and efficacy of our approxi-
mation theoretically and in simulations of stochastic ion-channel gating in neurons.
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I
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5 3B “3p_ should contribute most to the variance of vertex 8.
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Stochastic-Shielding Approximation of Markov Chains and its Application to
Efficiently Simulate Random Ion-Channel Gating

Nicolaus T. Schmandt and Roberto F. Galdn*
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Stochastic Shielding: Gaussian SDE (3-state chain)
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Stochastic shielding approximation for observable M = [0, 0, 1|7

0 0 0 0
dX = LX dt -+ 0 0 —v )?20423 \V ~3C¥32 dW
0 0 \ Xoans —/ X332

Error Ri2 = Ji2 Z Z ()\:rl)\) (MTvi) (W] C12)(Cipw;) (v M)
i T A

Ai#0 Aj#0

Stationary Variance E [(MTX)ﬂ = R12 + Ro3 % a5
a a
12 Nz 23 N3

N

1

Noise in the brain ~ Peter Thomas ~ Case Western Reserve University ~ BIRS Workshop “Brain Dynamics and Statistics: Simulation versus Data” ~ 2/27/2017



5 6 3
3a,, 20, oy
—_ 7 —_ 9 —_—1
OO0
13 Bm 15 2Bm 17 3Bm 19
Hodgkin-Huxley Sodium Channel: O(h[ lBh O(hl lBh O(hl lBh ah[ lBh
14 34 16 2g 18 g 20
S | —_— 3 5
O=0Z-Z00
Prm 2Pm 3Pm
1 2 3 =
[ Du) Bav) 0 0 AV 0 0 0o
3am(V) —Daa(V) 2Bm(V) 0 0 Br(V) 0 0
0 20 (V)  —Ds3(V)  3Bm(V) 0 0 Bu(V) 0
L 0 0 am(V)  —Du(V) 0 0 0 Br(V)
an(V) 0 0 0 —Ds5(V)  Bm(V) 0 0
0 ah(V) 0 0 3am(V) —DGG(V) Q,Bm(V) 0
0 0 ap(V) 0 0 20, (V)  —D7r(V)  3Bm(V)
\ 0 0 0 an(V) 0 0 am(V)  —Dss(V)

B = (\/Tl(V)Ni(l)(V)Cli ey \/Tk(V)Ni(k)(V)Cka ceey \/T‘m(V)Ni(m)(V)Cm)

Noise in the brain ~ Peter Thomas ~ Case Western Reserve University ~ BIRS Workshop “Brain Dynamics and Statistics: Simulation versus Data” ~ 2/27/2017



6 7 S
RIv m O(mi
Hodgkin-Huxley Sodium Channel: Q <—7©1o<—9<>12< 1'
B, - 2B, 7 3Pm 19

13 1

T B. T B. O(hl lBh ah[ lBh
HH Na channel: R as a function of voltage
Rk g o 18 o, 20
1,4 T T T T T T T T I I _)3 _>5
~RyR, || — —
- R ’R Bm 3Bm
10t 117 12| 3 4
N R15’R16
1 - I:‘17’R18~
I:‘19’R20
m.“
o 08 ]
(3]
c
(4]
5
Q_ -
£ 0.6

o
>

0.2

0 F———w—i = . ***mx+ :
2100 -80 60 —40 —20 0 20 40 60 80 100 D-Schmidt&PR Thomas,

Voltage J. Math. Neurosci 2014.

Noise in the brain ~ Peter Thomas ~ Case Western Reserve University ~ BIRS Workshop “Brain Dynamics and Statistics: Simulation versus Data” ~ 2/27/2017



1sec Stochastic Shielding for Bursty Systems

* 5 nicotinic Acetylcholine receptor,
following Colquhoun & Hawkes
L e ] 9 1982 Proc. Roy Soc.
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Acetylcholine shows a reversal of edge importance
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*

When is edge importance reversed?

Can introducing fast and slow timescales reverse edge-importance?

* We introduced two rates (1 and alpha) in all 3-state chain motifs.

*
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*

Can introducing fast and slow timescales reverse edge-importance?

When is edge importance inverted?

* We introduced two rates (1 and alpha) in all 3-state chain motifs.
Time scale separation: ratio of nonzero eigenvalues is large.

*

Edge-importance reversal never occurs in any single-parameter 3-state chain cases.
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Edge importance is reversed (R;—s > Ry—3) when we introduce three timescales:

® 33 > max(asg, a21), and Ri12 — Ro3
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Edge importance is reversed (R;—s > Ry—3) when we introduce three timescales:

® (93 > max(a32, 0421), and Ri> — Ros
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lll: On the danger of studying a disembodied brain

Both experimentally and mathematically, it is easier to study
the brain when the body has been removed.

But things can turn out differently than one expects. For
example...
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lll: On the danger of studying a disembodied brain

Image from the movie Fiend Without a Face (Arthur Crabtree, 1958)
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lll: On the danger of studying a disembodied brain

... for example, the mechanism underlying motor rhythms in an
iIsolated central pattern generator can be distinct from the
mechanism of rhythmicity in the intact brain-body system.
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lll: On the danger of studying a disembodied brain

... for example, the mechanism underlying motor rhythms in an
iIsolated central pattern generator can be distinct from the
mechanism of rhythmicity in the intact brain-body system.

Eupnea, Tachypnea, and Autoresuscitation in an Open-Loop versus
Closed-Loop Respiratory Control Model

* Closed-loop respiratory control model incorporating a central pattern
generator (CPG), the Butera-Rinzel-Smith (BRS) model, together with lung
mechanics, oxygen handling, and chemosensory components.

* Although both closed-loop and open-loop (isolated) CPG systems support
eupnea-like (normal breathing) activity, they do so via distinct mechanisms.

Joint work with Casey Diekman (NJIT) & Chris Wilson (Loma Linda University)
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Closed-loop Respiratory Control Model

CPG (V, h, n) Motor pool (a) Lung Volume (vol,)
20 0.01 3
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Model components: Central pattern generator (CPG), the Butera-Rinzel-Smith (BRS) model;
lung mechanics, gas exchange, oxygen handling, and chemosensory feedback.
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Normal (eupneic) breathing occurs in open and closed loop

A Closed loop B Open loop C Closed loop

(dynamic g,,,;. + dynamic h) (static g, ;. + dynamic h) (dynamic g, ;. + static h)
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In open loop, persistent-sodium inactivation variable h determines burst timing. In closed loop, bursts continue with h frozen.
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Changing the time
constant for h changes
the timing of bursts in
open loop (blue traces),
but not In closed loop
(black traces).
Recording and replaying
a decelerated sensory
feedback signal also
changes the interburst
interval (green traces),
but not within-burst
features.
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Bursting regimes in closed versus open loop
Open loop (static g, ;. + dynamic h)

0.9 | . — | ' ; ;
l l —
| | Q.
08- Q/Be : Bu/Be | Be /Be <
R U I :
i i D
0.7+ | | o 5. O
: a © 0
0.6+ i = ,‘,.Q g
| Q O
| | 3 Q
0.5_ : : O —
_______________________ | | + O
| n 2
0.4+ | - O
! Q)
_______________________ _:____________________ S 1 _ — o — — — - = =.
0.3h | g (q)
: ;=
0.2 : I 1 -
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Gtonic

Eupneic bursting in the full closed-loop model (black trace) remains in a region where the open loop would be
quiescent (blue traces), and the closed loop model with h fixed would support bursting.

Conclusion: the isolated and intact systems “breathe” via different mechanisms.
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Noise in the Brain: IMONS

FOUNDATION

Statistical and Dynamical Perspectives

Conclusions

0. Statistics and dynamical systems offer complementary
tools, integrated in “data assimilation” broadly defined.

|, Stochastic oscillators admit more than one generalization
of “phase”. Which is best for phase resetting is unknown.

Il.  Stochastic shielding provides a powerful framework for
accurately approximating Markov processes on graphs.

I1l.  Central circuits studied in isolation can lead to erroneous
conclusions about mechanisms in the intact organism.
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