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Motivation

Visual attention refers to the
selection of important visual
information from a complicated visual
field. In psychology, visual attention is
usually studied by behavioral tasks
using the recorded response times or
accuracies. However, the biological
neural mechanisms of the brain is not
directly touched.
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Motivation: Explain visual attention from a biological level of neurons, the basic
processing units in the nervous system. We construct statistical models that combine
neural observation (e.g. spike trains) and visual attention theories.

Objective
• Explore, develop and verify neural models for visual attention.
• Explain the neural mechanism during visual attention.
• Investigate the neural code relating external signal to internal spikes, under

visual attention theories.

Neural explanation for visual attention

Our neural explanation relies on the Neural Theory for Visual Attention
(NTVA) proposed by Bundesen et al (2005), which states that a neuron, when
presented to multiple objects, can only respond to a single stimulus object at one
time. On the other hand, empirical studies by Reynolds et al (1999) show that the
neuronal response to multiple stimuli is a weighted average of responses to single
objects. Following the two opposing hypotheses, we formulate two models on a
single neuron level:
• Probability mixing: the neuron follows a probability mixture, responding to

each single object with probabilities;
• Response averaging: the neuron’s response is a weighted average of responses

to each single object.
Furthermore, based on NTVA and probability mixing, we formulate two opposing
models for neural ensembles:
• Parallel processing: Neurons split the attention between different objects, with

some neurons attending one object while some others attending another one. All
objects are processed simultaneously (in parallel).

• Serial processing: At any given time, all neurons attend the same stimulus,
and they change the attention together. Objects are processed sequentially.

Spiking neuron models

Evolution of membrane voltage, and generation of spikes:
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Point process

Diffusion process
We employ two types of models:
• Point process models, where we only look at the discrete sequence of spikes,

and model the conditional intensity function for the point process.
• Leaky integrate-and-fire models, where the voltage is modeled as a diffusion

process incorporating spiking history effects. A spike is formed whenever the
voltage passes a threshold value. The likelihood function can be evaluated via the
first-passage time problem by solving the Fokker-Planck equations.

State-space representation

We construct a unified state-space model to describe visual attention through neu-
rons using spike train data, combining the above two components.
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Stimuli

Attention (hidden)

Spike train (observed)

Neural explanation for visual attention governs the transitions of the attention
states X . Spiking neuron models govern the formation of spike trains Y .

Neural coding in visual attention

Encoding
Goal: S and Y known, X hidden. Given
S1:T = s1:T and Y1:T = y1:T , estimate the
parameters θ for all underlying distributions.
Maximum likelihood:
θ̂ = arg max

θ

∫
p(y1:T |s1:T , x1:T )p(x1:T |s1:T )dx1:T

For discrete X : evaluating marginal likelihood;
For continuous X : (Sequential) Monte Carlo
for X , giving pseudo-marginals.
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Decoding
Goal: Y known, X and S hidden. Given fitted
parameters θ and Y1:T = y1:T , infer unknown
S1:T and/or X1:T .
Method: Obtain the conditional distribution
through sequential Monte Carlo:

pθ(s1:T , x1:T |y1:T )
∝ pθ(y1:T |x1:T , s1:T )pθ(x1:T |s1:T )pθ(s1:T )

• Online filtering; offline smoothing
• (Auxiliary) Particle filter; parameter learning
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Result overview

The state-space model has been applied in different situations:
1 Compare probability mixing and response averaging on experimental data,
using Hawkes point process models for spike trains. NTVA and probability
mixing were supported. (Li et al, Frontiers in Computational Neuroscience, 2016)

2 Distinguish between parallel and serial processing on experimental data, also
using Hawkes point process models.

3 Distinguish between probability mixing and response averaging in more
realistic biophysical settings using the LIF model with simulations. (Li et al,
JMN, 2016)

4 Investigate neural decoding in biophysical settings using the LIF model with
simulations. Various SMC methods were explored.

Summary
• Constructed and verified novel mathematical neural models for visual attention.
• Combined spiking neuron models with visual attention theories.
• Applied Hawkes point process models and leaky integrate-and-fire models.
• Explained NTVA considering a single neuron (probability mixing and response

averaging) and neuron ensembles (parallel and serial processing).
• Formulated the models as a unified state-space framework for neural encoding

and decoding in visual attention.
• The application of these models provides both biological and statistical insights.


