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1. A TALE OF TWO PARADIGMS
Generalized Linear Models (GLMs) are often simple to formulate and
estimate and may therefore aid researchers in designing statistical mod-
els to analyze associations in complex data structures, such as spike
trains. This model class includes a vast amount of estimation theory and
tools, to both fit and assess the model when working with real data. Due
to their statistical origin, GLMs are able to capture both structural fea-
tures, such as association, as well as variability of the input data.

Computational Models (CMs) are designed from a mechanistic per-
spective, with the goal of describing intrinsic properties of the studied
phenomenon, through a deterministic model design of, say, a neuron.
Famous examples include classical neuronal models such as Hodgkin-
Huxley, FitzHugh-Nagumo, Morris-Lecar and the more recent Izhike-
vich model. Common to these models is the fact that they often have a
meaningful biophysical interpretation.

In this study we compare how well GLMs capture both the variability
and the structure from simulations of different types of Izhikevich neu-
rons, injected with noisy stimulus of varying levels. We simulate spike
trains ranging from near deterministic to almost complete randomness
in spiking behavior. We then fit a simple class of multiplicatively sepa-
rable history dependent GLMs to these spike trains and show, through a
goodness-of-fit analysis, that these models perform optimally in a range
of input noise.

2. SIMULATION MODEL
The Izhikevich CM is a two-dimensional model capable of simulating
various types of observed neuron acitivity. It simulates action potentials
v, with a spiking threshold of 30mV, using a secondary refractory vari-
able u

dvt = 0.04v2
t + 5vt + 140− ut + It

dut = a(bvt − ut),

∣∣∣∣∣ if vt ≥ 30 vt+ = c

ut+ = ut + d,
(1)

where a, b, c, d are parameters chosen to display a certain behavior. It is
the injected stimulus. The parameters c, d controls the resetting values
for v and u whenever v ≥ 30.
Variability was introduced through the stimulus It, where

It ∼ N (I0, σ
2).

Hence, the standard deviation σ becomes the controlling parameter of
the noise injected into the simulation. We simulated 6 types of neurons
with varying noise levels, σ ∈ (0, 20], ranging from near deterministic to
almost completely random spike pattern.

3. GLM DESIGN
We use a discrete time approximation to an orderly continuous time
counting process N(t) for a sufficiently small timestep ∆t = tk − tk−1,
such that P (∆N(t) > 1) ≈ 0. Conditional on the past spiking history Ht,
the intensity is

λ(t
∣∣Ht) = lim

∆t→0

P
(
spike in [t, t+ ∆t)

∣∣Ht

)
∆t

.

Assuming multiplicatively separability, the log intensity can be modeled
as

log
(
λ(tk

∣∣Htk)
)

= β0 +

p∑
j=1

βj

m∑
i=1

yk−ibij , (2)

where bij are indicator functions dependent on a window width param-
eter w

bij = 1{(j−1)w+1,...,jw}(i),

such that w controls the number of parameters to estimate. Given spike
times {sk}nk=1, the conditional log-likelihood with parameter θ,

logL(s; θ) =

∫ T

0

log λ(t|Ht, θ)dN(t)−
∫ T

0

λ(t|Ht, θ)dt (3)

can be approximated as a Poisson distribution with a history dependent
intensity in small time bins of size ∆t, and the GLM framework to fit
models can thus be exploited.

Maximization of the log-likelihood (3) was performed as a penalized L1
regression (LASSO) using the R package glmnet, due to convergence
issues for near deterministic spike trains.

4. SIMULATED SPIKE TRAINS
The figure below presents spike trains simulated using an Euler-
Maruyama scheme with timestep ∆t = 0.1ms for 6 types of neurons
and varying noise level σ ∈ (0, 20]. Notice that the sensitivity of the
regular spike patterns to σ varies between types, with Spike Frequency
Adaption diffusing slowly into random behavior, where as Mixed Mode
diffuse almost instantaneously.
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Is is evident that bursting is present even at high noise levels, whereas
inter-burst periods and interspike intervals (ISIs) for regular spiking neu-
rons becomes almost completely random in highly noisy regimes. As
seen to the right in Section 5, the estimated models also capture bursting,
even for highly noisy spike trains, whereas regular spike activity is more
difficult to extract from noisy data.

5. ESIMATED FILTERS

The estimated exponential 100ms filters ~F , with

~Fi = exp

( p∑
j=1

βjbij

)
, i = 1, . . . , 1000 (4)

are presented below for each neuron type and varying noise σ. These
filters correspond to the modulation of the baseline λ0 = exp(β0) at lags
i = 1, . . . , 1000, which corresponds to a 100ms lagged history.
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The filters approach delta functions for σ → 0 and vanishes for σ → 20,
besides a refractory period after spiking, which is present along all noise
levels. Bursting is captured even at the highest noise levels.

6. GOODNESS-OF-FIT

0

5

10

15

20

25

30

35

−
lo

g(
p)

 o
f K

S
 s

ta
tis

tic

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
de

vi
an

ce

5% limit
Tonic Spiking
Phasic Spiking
Tonic Bursting
Phasic Bursting
Mixed Mode
Spike Freq. Adap.

σ

The plot show − log(p-values) of KS statistics for rescaled spiketimes,
based on the estimated models and the relative deviance for the 6 neuron
types as functions of σ.

The − log of the p-values decay towards the 5% limit when σ increases,
where as relative deviances indicate that as the noise level increases, the
estimated GLMs approach the null Poisson, which does not capture any
intrinsic neuron features, but only the baseline firing rate λ0.

These results indicate that the multiplicatively separable GLM perform
optimally in a range of noise, in terms of describing structure and vari-
ability, when there is sufficient variability in the data, but with enough
structure present to capture intrinsic neuron properties.

7. TONIC BURSTING AND SPIKING NEURONS
Below we examine Tonic Spiking and Bursting neurons to contrast regular spiking activity and bursting periods at σ = 5.

The two plots below each display, Topleft: ISI histogram; Topright: rescaled spiketimes overlaid with an Exp(1) distribution; Bottomleft: estimated
filter ~F ; Bottomright: KS plot.
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For Tonic Spiking the ISI histogram shows regular spiking patterns at ≈ 27ms. The filter below show peaks at multiples of the ISI mean, q · 27ms,
for q = 1, 2, 3, respectively. The rescaled spike times and the KS plot both show, that the model tends to overestimate smaller ISIs and slightly
underestimate longer ISIs.

The Tonic Bursting ISI histogram is bi-modal and the estimated filter shows a peak corresponding to bursting, but does not show positive modulation
(> 1) around the inter-burst interval mean ≈ 45ms. Looking at the rescaled spike times and the KS plot, this model seems to fit somewhat better than
that of the Tonic Spiking neuron. However, this is due to the fact that bursting is captured very well by the model, whereas the regularity between
bursts is not, as evident from the filter, and that bursts account for nearly 75-80% of the spike train.

8. MODEL EXTENSIONS
A possible next step is to further investigate history dependent models
restricted to the previous spike only, e.g. renewal models, where

log
(
λ(t
∣∣Ht)

)
= β0 + g

(
s∗t , t

)
,

and g(·) is a function the last observed spike s∗t = maxj{sj |sj < t}, and
time t, for observed spike times {sj}nj=1.
Another extension to the Tonic Spiking & Bursting analysis, is to define a
State Space Model, where the state variable Xt is an indicator of whether
the neuron is bursting at time t or not

log
(
λ(t
∣∣Ht, Xt)

)
= β0 + 1{Xt=1}λ

burst(t|Ht) +1{Xt=0}λ
regular(t|Ht).

This can possibly improve the fit to bi-modal ISI histograms for bursting
neurons and it may also serve as a link for interpreting GLM parameters
with those of the Izhikevich model (1) that control bursting behavior.

9. THE BOTTOM LINE
We have shown that multiplicatively separable history dependent GLMs, perform optimally in a range of injected constant, but noisy stimulus, for
Izhikevich neurons, in terms of capturing variability and structural properties of neurons.

Furthermore, our analysis show, that while these GLMs capture in-bursting quite well, the model has more difficulty in accounting for the inter-burst
patterns. Future extensions to the simple models considered here may be able to capture this property better and therefore lead to further insight
between Izhikevich parameters and interpreting GLMs.

REFERENCES

Izhikevich EM (2003) Simple model of spiking neurons. Trans. Neur. Netw. 14(6):1569–1572

Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN (2005) A point process framework for relating
neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neuro-
physiology 93(2):1074–1089

CONTACT
vCard

email ostergaard@math.ku.dk

web jacobostergaard.com


