Tutorial on the R package TDA

Jisu Kim
Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, Vincent Rouvreau

Abstract

This tutorial gives an introduction to the R package TDA, which provides some tools for Topological Data Analysis. The salient topological features of data can be quantified with persistent homology. The R package TDA provide an R interface for the efficient algorithms of the C++ libraries GUDHI, Dionysus, and PHAT. Specifically, The R package TDA includes functions for computing the persistent homology of the Rips complex, alpha complex, and alpha shape complex, and a function for the persistent homology of sublevel sets (or superlevel sets) of arbitrary functions evaluated over a grid of points. The R package TDA also provides a function for computing the confidence band that determines the significance of the features in the resulting persistence diagrams.

Keywords: Topological Data Analysis, Persistent Homology.

1. Introduction

R(http://cran.r-project.org/) is a programming language for statistical computing and graphics.

R has several good properties: R has many packages for statistical computing. Also, R is easy to make (interactive) plots. R is a script language, and it is easy to use. But, R is slow. C or C++ stands on the opposite end: C or C++ also has many packages(or libraries). But, C or C++ is difficult to make plots. C or C++ is a compiler language, and is difficult to use. But, C or C++ is fast. In short, R has short development time but long execution time, and C or C++ has long development time but short execution time.

Several libraries are developed for Topological Data Analysis: for example, GUDHI(https://project.inria.fr/gudhi/software/), Dionysus(http://www.mrzv.org/software/dionysus/), and PHAT(https://code.google.com/p/phat/). They are all written in C++, since Topological Data Analysis is computationally heavy and R is not fast enough.

R package TDA(http://cran.r-project.org/web/packages/TDA/index.html) bridges between C++ libraries(GUDHI, Dionysus, PHAT) and R. TDA package provides an R interface for the efficient algorithms of the C++ libraries GUDHI, Dionysus and PHAT. So by using TDA package, short development time and short execution time can be both achieved.

R package TDA provides tools for Topological Data Analysis. You can compute several different things with TDA package: you can compute common distance functions and density estimators, the persistent homology of the Rips filtration, the persistent homology of sublevel sets of a function over a grid, the confidence band for the persistence diagram, and the cluster density trees for density clustering.

2. Installation

First, you should download R. R of version at least 3.1.0 is required:
Tutorial on the R package TDA

http://cran.r-project.org/bin/windows/base/ (for Windows)
http://cran.r-project.org/bin/macosx/ (for (Mac) OS X)

R is part of many Linux distributions, so you should check with your Linux package management system.

You can use whatever IDE that you would like to use (Rstudio, Eclipse, Emacs, Vim...). R itself also provides basic GUI or CUI. I personally use Rstudio:

http://www.rstudio.com/products/rstudio/download/

For Windows and Mac, you can install R package TDA as in the following code (or pushing 'Install R packages' button if you use Rstudio).

```r
# installing R package TDA
if (!require(package = "TDA")) {
  install.packages(pkgs = "TDA")
}
```

Loading required package: TDA

If you are using Linux, you should install R package TDA from the source. To do this, you need to install two libraries in advance: gmp (https://gmplib.org/) and mpfr (http://www.mpfr.org/). Installation of these packages may differ by your Linux distributions. Once those libraries are installed, you need to install four R packages: parallel, FNN, igraph, and scales. parallel is included when you install R, so you need to install FNN, igraph, and scales by yourself. You can install them by following code (or pushing 'Install R packages' button if you use Rstudio).

```r
# installing required packages
if (!require(package = "FNN")) {
  install.packages(pkgs = "FNN")
}
```

Loading required package: FNN

```r
if (!require(package = "igraph")) {
  install.packages(pkgs = "igraph")
}
```

Loading required package: igraph

```
## Attaching package: 'igraph'
## The following object is masked from 'package:FNN':
## knn
## The following objects are masked from 'package:stats':
## decompose, spectrum
## The following object is masked from 'package:base':
## union
```
Then you can install the R package TDA as in Windows or Mac:

```r
if (!require(package = "scales")) {
  install.packages(pkgs = "scales")
}
```

Loading required package: scales

Once installation is done, R package TDA should be loaded as in the following code, before using the package functions.

```r
library(package = "TDA")
```

3. Sample on manifolds, Distance Functions, and Density Estimators

3.1. Uniform Sample on manifolds

A set of \(n \) points \(X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d \) has been sampled from some distribution \(P \).

- \(n \) sample from the uniform distribution on the circle in \(\mathbb{R}^2 \) with radius \(r \).

```r
circleSample <- circleUnif(n = 20, r = 1)
plot(circleSample, xlab = "", ylab = "", pch = 20)
```
3.2. Distance Functions, and Density Estimators

We compute distance functions and density estimators over a grid of points. Suppose a set of points $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ has been sampled from some distribution P. The following code generates a sample of 400 points from the unit circle and constructs a grid of points over which we will evaluate the functions.

```r
# uniform sample on the circle, and grid of points
X <- circleUnif(n = 400, r = 1)
lim <- c(-1.7, 1.7)
by <- 0.05
margin <- seq(from = lim[1], to = lim[2], by = by)
Grid <- expand.grid(margin, margin)
```

- The distance function is defined for each $y \in \mathbb{R}^d$ as $\Delta(y) = \inf_{x \in X} \|x - y\|_2$.

```r
# distance function
distance <- distFct(X = X, Grid = Grid)
```

```r
par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
     z = matrix(distance, nrow = length(margin), ncol = length(margin)),
     xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
     expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
     main = "Distance Function")
```
• The Gaussian Kernel Density Estimator (KDE), for each $y \in \mathbb{R}^d$, is defined as

$$
\hat{p}_h(y) = \frac{1}{n(\sqrt{2\pi}h)^d} \sum_{i=1}^{n} \exp\left(\frac{-\|y - x_i\|^2}{2h^2}\right).
$$

where h is a smoothing parameter.

```r
# kernel density estimator
##########################################################################
# kernel density estimator
##########################################################################
h <- 0.3
KDE <- kde(X = X, Grid = Grid, h = h)
par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
      z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
      xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
      expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
      main = "KDE")
```
4. Persistent Homology and Landscape

4.1. Persistent Homology Over a Grid

The function `gridDiag` computes the persistent homology of sublevel (and superlevel) sets of the functions. The function `gridDiag` evaluates a given real valued function over a triangulated grid (in arbitrary dimension), constructs a filtration of simplices using the values of the function, and computes the persistent homology of the filtration. The user can choose to compute persistence diagrams using either the `Dionysus` library (library = "Dionysus") or the `PHAT` library (library = "PHAT").

The following code computes the persistent homology of the superlevel sets (sublevel = FALSE) of the kernel density estimator (FUN = kde, h = 0.3) using the point cloud stored in the matrix X from the previous example. The other inputs are the features of the grid over which the kde is evaluated (lim and by), and a logical variable that indicates whether a progress bar should be printed (printProgress).

```r
# persistent homology of a function over a grid
Diag <- gridDiag(X = X, FUN = kde, lim = cbind(lim, lim), by = by,
                  sublevel = FALSE, library = "Dionysus", printProgress = FALSE, h = 0.3)
```

The function plot plots persistence diagram for objects of the class "diagram".

```r
# plotting persistence diagram
par(mfrow = c(1,3))
plot(X, main = "Sample X", pch = 20)
persp(x = margin, y = margin,
     z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
```

```r
```
4.2. Landscape

The persistence landscape is a collection of continuous, piecewise linear functions $\lambda: \mathbb{Z}^+ \times \mathbb{R} \to \mathbb{R}$ that summarizes a persistence diagram. Consider the set of functions created by tenting each point $p = (x, y) = \left(\frac{b+d}{2}, \frac{d-b}{2}\right)$ representing a birth-death pair (b, d) in the persistence diagram D as follows:

$$
\Lambda_p(t) = \begin{cases}
 t - x + y & t \in [x - y, x] \\
 x + y - t & t \in (x, x+y] \\
 0 & \text{otherwise}
\end{cases}
\quad \begin{cases}
 t - b & t \in [b, \frac{b+d}{2}] \\
 d - t & t \in (\frac{b+d}{2}, d] \\
 0 & \text{otherwise}
\end{cases}
$$

We obtain an arrangement of piecewise linear curves by overlaying the graphs of the functions $\{\Lambda_p\}_p$; see Figure 1 (left). The persistence landscape of D is the collection of functions $\lambda(k, t) = \max_p \Lambda_p(t) \quad t \in [0, T], k \in \mathbb{N}$, (2)

where k_{max} is the kth largest value in the set. see Figure 1 (middle).

Figure 1: Left: we use the rotated axes to represent a persistence diagram D. A feature $(b, d) \in D$ is represented by the point $(\frac{b+d}{2}, \frac{d-b}{2})$ (pink). Right: the blue curve is the landscape $\lambda(1, \cdot)$.

landscape evaluates the landscape function over a one-dimensional grid of points tseq. In the following code, we use therips persistence diagram in previous example to construct the
corresponding landscape for one-dimensional features (dimension = 1). The option \(KK = 1 \) specifies that we are interested in the 1st landscape function. \texttt{landscape} return a real valued vector, which can be simply plotted with \texttt{plot(tseq, Land, type = "l").

```r
# computing landscape
tseq <- seq(from = 0, to = 0.2, length = 1000)  # domain
Land <- landscape(Diag = Diag["diagram"], dimension = 1, KK = 1, tseq = tseq)
par(mfrow=c(1,2))
plot(x = Diag["diagram"], main = "KDE Diagram")
plot(tseq, Land, type = "l", xlab = "(Birth+Death)/2", ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "Landscape")
axis(1); axis(2)
```

5. Statistical Inference on Persistent Homology and Landscape

\((1 - \alpha)\) confidence band can be computed for a function using the bootstrap algorithm, which we briefly describe using the kernel density estimator:

1. Given a sample \(X = \{x_1, \ldots, x_n\} \), compute the kernel density estimator \(\hat{p}_h \);
2. Draw \(X^* = \{x_1^*, \ldots, x_n^*\} \) from \(X = \{x_1, \ldots, x_n\} \) (with replacement), and compute \(\theta^* = \sqrt{n}||\hat{p}_h^*(x) - \hat{p}_h(x)||_\infty \), where \(\hat{p}_h^* \) is the density estimator computed using \(X^* \);
3. Repeat the previous step \(B \) times to obtain \(\theta_1^*, \ldots, \theta_B^* \);
4. Compute \(q_\alpha = \inf \left\{ q : \frac{1}{B} \sum_{j=1}^{B} I(\theta_j^* \geq q) \leq \alpha \right\} \);
5. The \((1 - \alpha)\) confidence band for \(\mathbb{E}[\hat{p}_h] \) is \(\left[\hat{p}_h - \frac{q_\alpha}{\sqrt{n}}, \hat{p}_h + \frac{q_\alpha}{\sqrt{n}} \right] \).

\texttt{bootstrapBand} computes \((1 - \alpha)\) bootstrap confidence band, with the option of parallelizing the algorithm (\texttt{parallel=}TRUE). The following code computes a 90% confidence band for \(\mathbb{E}[\hat{p}_h] \).
bootstrap confidence band for kde function

```r
bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 100,
                           parallel = FALSE, alpha = 0.1, h = h)
print(bandKDE[["width"]])
```

Then such confidence band for $E[\hat{p}_h]$ can be used as the confidence band for the persistent homology.

bootstrap confidence band for persistent homology over a grid

```r
par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(X = Diag["diagram"], band = 2 * bandKDE["width"],
     main = "KDE Diagram")
```

Such confidence band for $E[\hat{p}_h]$ can also be used as the confidence band for the landscape.

```r
par(mfrow = c(1,2))
plot(tseq, Land, type = "l", xlim = c(-1, 1), ylim = c(-1, 1),
     ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "200 samples")
axis(1); axis(2)
polygon(c(tseq, rev(tseq)), c(Land - bandKDE["width"]),
        rev(Land + bandKDE["width"]), col = "pink", lwd = 1.5,
        border = NA)
lines(tseq, Land)
```
Affiliation:
Firstname Lastname
Affiliation
Address, Country
E-mail: name@address
URL: http://link/to/webpage/