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Advection-diffusion
Passive scalar released in a flow: a classical problem.

Concentration C(x, t) obeys the advection—diffusion equation:

OC+u-VC = kV>C,
with a flow u(x, t) that is given and satisfies V - u = 0.

Pdf of particles positions:

X =u(X,t)+V2:W .



Introduction Large deviations FKPP fronts Rectangular network Conclusions

0000 00 00 00 [©]
:

Advection-diffusion

For t > 1, the combined effect of advection and diffusion can
often be modelled by an effective diffusivity e :

> EX ® X ~ 2Kest,
» C=<exp(—x- f@e_f} -x/(4t)): Gaussian distribution,

» effective equation

8tC =V (Heff . VC)

In simple flows: kg can be computed explicitly.
» shear flows (Taylor dispersion),
» periodic flows.
e.g. Majda & Kramer 1999
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Effective diffusivity
Shear  dispersion:
dye in pipe flows
spreads along the
pipe.

Keff = Wl((/j

Cellular flow: ¢ = sinxsiny

Keff = 2ukl? for k< 1,

with v ~ 0.5327407 - - - Shraiman, Rosenbluth et al, Childress, Soward. ..
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Limitations of effective diffusivity

Diffusive approximation assumes x/t'/2 = O(1) as t — oc.

It cannot describes the tails of C(x, t) which are non-Gaussian.

Large deviations:
» obtain C(x, t) for x/t = O(1),

» recover homogenisation as a limiting case.

Interest:
» Low concentrations can be important:

» anecdotally: highly toxic chemicals,
» exactly: FKPP fronts.

» Unifies ‘improvements’ to homogenisation.

» Example of extreme-event statistics.



Introduction Large deviations FKPP fronts Rectangular network Conclusions
0000 0 [e]e] [e]e] [}

Large deviations
For t > 1, the concentration takes the large-deviation form

Clx.t) = exp(~1(€) for &=ux/t=0(1),

with g the rate function, convex with g(0) = ¢/(0) = 0.

4

Computing g: define f(q) by

etf(q) ~ ]EeqX , r ]
f and g are a Legendre transform pair. ‘ ‘

N

1

f can be estimated
» by Monte Carlo (incl importance sampling),
» by solving eigenvalue problems (for d;u = 0).

Effective equation: 9;C = f(—V)C.
Haynes & Vanneste 2014a
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Large deviations: cellular flow

For Pe > 1, par- * 2"
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Three regimes: (I) |x|/t = O(Pe=3/%); (1) |x|/t = O(log Pe) and
(II) |x|/t = O(Pe). Haynes & Vanneste 2014b
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FKPP fronts

Advection—diffusion-reaction equation:
HC+u-VC=Pe 'V2C+DaC(C—-1),

logistic reaction, with Da = L/(Ur) , Damkohler number.
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FKPP fronts

Front speed is related to  «
large deviations: \

c=g '(Da).

Gartner & Freidlin (1979) s 0 05 1
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FKPP fronts

Front speed is related to  «
large deviations: \

c=g '(Da).
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Rectangular network

L Non-Gaussian behaviour
: o induced by geometry.

oL Apphcatlons: urbgn pollu-
[ tion, porous media. ..

Rate function g:
» forU =V =0: fromg ~ [£|*?/2to g ~ (|&]| + |&])?/4
(diffusion with /2 in Ly-norm vs. « in L1-norm),
» for U, V > 1: g independent of x, topological dispersion.
5
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Conclusions

» Large-deviation theory to obtain
» scalar concentrations C =< exp(—tg(x/t)) for x/t = O(1),
» speed of FKPP fronts: ¢ = ¢~!(Da),
» Assumes t > 1 but works well for t = O(1).
» Rate function g is calculated by solving an e’value problem.
» Extensions: towards turbulent flows,
» time-periodic flows,
» random flows (with A. Renaud),
» simulation data.

» Complex geometries.
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