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Advection-diffusion
Passive scalar released in a flow: a classical problem.

Concentration C(x, t) obeys the advection–diffusion equation:

∂tC + u · ∇C = κ∇2C ,

with a flow u(x, t) that is given and satisfies∇ · u = 0.

Pdf of particles positions:

Ẋ = u(X, t) +
√

2κẆ .
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Advection-diffusion

For t� 1 , the combined effect of advection and diffusion can
often be modelled by an effective diffusivity κeff :

I EX ⊗ X ∼ 2κefft,
I C � exp(−x · κ−1

eff · x/(4t)): Gaussian distribution,
I effective equation

∂tC = ∇ · (κeff · ∇C).

In simple flows: κeff can be computed explicitly.
I shear flows (Taylor dispersion),
I periodic flows.

e.g. Majda & Kramer 1999
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Effective diffusivity
Shear dispersion:
dye in pipe flows
spreads along the
pipe.

κeff = κ−1〈
(∫ y

−1
U(y′)dy′

)2

〉+ κ ∝ κ−1 . Taylor 1953

Cellular flow: ψ = sin x sin y

κeff = 2νκ1/2 for κ� 1,
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with ν ∼ 0.5327407 · · · Shraiman, Rosenbluth et al, Childress, Soward. . .
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Limitations of effective diffusivity

Diffusive approximation assumes x/t1/2 = O(1) as t→∞.
It cannot describes the tails of C(x, t) which are non-Gaussian.

Large deviations:
I obtain C(x, t) for x/t = O(1),
I recover homogenisation as a limiting case.

Interest:
I Low concentrations can be important:

I anecdotally: highly toxic chemicals,
I exactly: FKPP fronts.

I Unifies ‘improvements’ to homogenisation.
I Example of extreme-event statistics.
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Large deviations
For t� 1, the concentration takes the large-deviation form

C(x, t) � exp(−tg(ξ)) for ξ = x/t = O(1),

with g the rate function, convex with g(0) = g′(0) = 0.

Computing g: define f (q) by

etf (q) � E eq·X ,

f and g are a Legendre transform pair.
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f can be estimated
I by Monte Carlo (incl importance sampling),
I by solving eigenvalue problems (for ∂tu = 0).

Effective equation: ∂tC = f (−∇)C .
Haynes & Vanneste 2014a
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Large deviations: cellular flow

For Pe � 1, par-
ticles are trapped
inside cells, with
rare exits across
separatrices.
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log C at t = 2, 4
for Pe = 250.

Three regimes: (I) |x|/t = O(Pe−3/4); (II) |x|/t = O(log Pe) and
(III) |x|/t = O(Pe). Haynes & Vanneste 2014b
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FKPP fronts

Advection–diffusion–reaction equation:

∂tC + u · ∇C = Pe−1∇2C +Da C(C− 1) ,

logistic reaction, with Da = L/(Uτ) , Damköhler number.
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FKPP fronts
Front speed is related to
large deviations:

c = g−1(Da) .

Gartner & Freidlin (1979) −1 −0.5 0 0.5 10
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Rectangular network 1
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V Non-Gaussian behaviour
induced by geometry.
Applications: urban pollu-
tion, porous media. . .

Rate function g:
I for U = V = 0: from g ∼ |ξ|2/2 to g ∼ (|ξ1|+ |ξ2|)2/4

(diffusion with κ/2 in L2-norm vs. κ in L1-norm),
I for U, V � 1: g independent of κ, topological dispersion.
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Rectangular network
‘Real Manhattan’
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Conclusions
I Large-deviation theory to obtain

I scalar concentrations C � exp(−tg(x/t)) for x/t = O(1),
I speed of FKPP fronts: c = g−1(Da),

I Assumes t� 1 but works well for t = O(1).
I Rate function g is calculated by solving an e’value problem.
I Extensions: towards turbulent flows,

I time-periodic flows,
I random flows (with A. Renaud),
I simulation data.

I Complex geometries.
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