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Introduction

Turbulent dynamical systems
I ubiquitous in geoscience, engineering, neural and material sciences

I characterized by a large dimensional phase space and a large dimensional
space of strong instabilities, which transfer energy throughout the system

Central math/science issues
I accurate descriptions of turbulent phenomena

I state estimation with partial and incomplete information from noisy observations

I effective predictions with improved initializations using filtering/data assimilation

I quantifying uncertainty and model error
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Conditional Gaussian Nonlinear Systems

Many turbulent dynamical systems belong to conditional Gaussian framework.

The conditional Gaussian systems have the following abstract form,

duI = [A0(t ,uI) + A1(t ,uI)uII]dt + ΣI(t ,uI)dWI(t), (1a)

duII = [a0(t ,uI) + a1(t ,uI)uII]dt + ΣII(t ,uI)dWII(t), (1b)

Once uI(s) for s ≤ t is given, uII(t) conditioned on uI(s) becomes a Gaussian process,

p
(
uII(t)|uI(s ≤ t)

)
∼ N (ūII(t),RII(t)). (2)

I Despite the conditional Gaussianity, the coupled system (1) remains highly
nonlinear and is able to capture the non-Gaussian features as in nature.

I The conditional distribution in (2) has closed analytic form (Liptser & Shiryaev 2001).

duII(t) =[a0(t, uI) + a1(t, uI)uII ]dt + (RIIA
∗
1 (t, uI))(ΣIΣ

∗
I )−1(t, uI)

[
duI − (A0(t, uI) + A1(t, uI)uII)dt

]
,

dRII(t) =
{

a1(t, uI)RII + RIIa
∗
1 (t, uI) + (ΣIIΣ

∗
II )(t, uI) − (RIIA

∗
1 (t, uI))(ΣIΣ

∗
I )−1(t, uI)(RIIA

∗
1 (t, uI))∗

}
dt.
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Examples of conditional Gaussian systems.

duI = [A0(t ,uI) + A1(t ,uI)uII]dt + ΣI(t ,uI)dWI(t),

duII = [a0(t ,uI) + a1(t ,uI)uII]dt + ΣII(t ,uI)dWII(t),

Noisy Lorenz 63 (L-63) model

dx = σ(y − x)dt + σx dWx ,

dy =
(
x(ρ− z)− y

)
dt + σy dWy ,

dz = (xy − βz)dt + σz dWz .

ρ = 28

σ = 10

β = 8/3

Boussinesq equation

∂u

∂t
+ u · ∇u = −

1

ρ0
∇p + ν∇2u− gαT ,

∂T

∂t
+ u · ∇T = κ∇2T + F .

Finite Fourier-series expansion +
stochastic noise.

A two-layer Lorenz 96 model

dui

dt
= ui−1(ui+1 − ui−2) +

J∑
j=1

γi,j ui vi,j − d̄i ui

+ F + σuẆui , i = 1, . . . , I,

dvi,j

dt
= −dvi,j vi,j − γj u

2
i + σi,j Ẇvi,j , j = 1, . . . , J.

u
1

u
2

u
3

u
4

u
5

u
6

u
1

u
2

u
3

u
4

u
5

u
6

u
1

u
2

u
3

u
4

u
5

u
6

u
1

u
2

u
3

u
4

u
5

u
6

u
1

u
2

u
3

u
4

u
5

u
6

v
1, 1

v
2, 1

v
6, 1

v
3, 1

v
5, 1

v
4, 1

v
1, 2

v
2, 2

v
6, 2

v
3, 2

v
5, 2

v
4, 2

v
1, 3

v
2, 3

v
6, 3

v
3, 3

v
5, 3

v
4, 3

v
1, 4

v
2, 4

v
6, 4

v
3, 4

v
5, 4

v
4, 4

v
1, 5

v
2, 5

v
6, 5

v
3, 5

v
5, 5

v
4, 5

3 / 23



Outline

1. Predicting the large-scale Madden-Julian Oscillation (MJO) via a
physics-constrained low-order nonlinear stochastic model.

2. Understanding the information barrier and data assimilation skill of recovering
ocean flows with noisy Lagrangian tracers.

3. An efficient statistically accurate algorithm for solving the Fokker-Planck equation
in high dimensions with strongly non-Gaussian features.
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I. Predicting the Large-Scale Madden-Julian Oscillation
The Madden-Julian Oscillation (MJO) (Lau & Waliser 2011):

I the dominant mode of tropical intraseasonal (30-90 days) variability in boreal winter

I a slow eastward moving large-scale envelope of convection

I affecting tropical and global weather patterns, important triggering factor of the El Niño

Extracting the large-scale MJO from the noisy and turbulent raw data:
I Linear methods (e.g. EOFs/PCAs) may not be able to capture the nonlinear features.

I A novel nonlinear techniques, Nonlinear Laplacian Spectral Analysis (NLSA), is applied
to the cloudiness data of dimensions O(105) (Giannakis & Majda, PNAS, 2012).

I NLSA captures nonlinear dynamical features such as intermittency and extreme events.

Tb : brightness temperature. (Movie source: Chen, Majda & Giannakis, Geophys. Res. Lett., 2014.)

red: weak convection (clear sky). blue: strong convection (heavy rainfall).

Consistent with the MJOs observed during the TOGA-COARE of 1992-1993 (Webster & Lukas).
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NLSA Time-Series Techniques =⇒ 2 components of MJO Cloud Patterns

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
−5

0

5

−4 −2 0 2 4
0

1

2

 

 

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
−5

0

5

−4 −2 0 2 4
0

1

2

−4 −2 0 2 4

10
−2

10
0

log scale

−4 −2 0 2 4

10
−2

10
0

log scale
MJO indices
Gaussian fit

MJO 2

MJO 1

prediction periodtraining period

Intermittent bursts of MJO activity

Physics-Constrained Low-Order Nonlinear Stochastic Model
for Predicting MJO Cloud Patterns (MJO1, MJO2)

(Chen, Majda, Giannakis, Geophys. Res. Lett., 2014)
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Physics-Constrained Low-Order Stochastic Model

du1 = (−du(t) u1 − ω̂ u2) dt + σu dWu1 ,

du2 = (−du(t) u2 + ω̂ u1) dt + σu dWu2 ,

with
du(t) = du0 + du1 sin(ωf t + φ).
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,

I Observed variables u1, u2: MJO 1 and MJO 2 indices from NLSA.

I Standard regression model, insufficient in capturing the key features.
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Conditional Gaussian framework

duI = [A0(t, uI) + A1(t, uI)uII ]dt

+ ΣI(t, uI)dWI(t),

duII = [a0(t, uI) + a1(t, uI)uII ]dt

+ ΣII(t, uI)dWII(t),

I Observed variables u1, u2: MJO 1 and MJO 2 indices from NLSA.

I Hidden variables v , ω: stochastic damping and stochastic phase.

I Energy-conserving nonlinear interactions between (u1, u2) and (v , ω).
(Majda, Harlim, 2012)

Prediction. Given the initial values of (u1, u2) and (v , ω), run an ensemble forecast.

How to determine the initial values of the hidden variables?
Effective data assimilation algorithm based on conditional Gaussian framework!
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Calibration of parameters using Information Theory (Robust parameters)
Model vs. Observations: Non-Gaussian statistics match
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Skillful prediction at 15- and 25-days lead times
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I Reaching the predictability limit of the MJO indices (based on twin experiments).
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II. Noisy Lagrangian Tracers in Filtering Geophysical Flows
I Lagrangian tracers: drifters/floaters following a parcel of fluid’s movement.

I [Inverse Problems.] Data assimilation with Lagrangian tracers: recovering the
underlying velocity field with observations (from tracers).

I Only dynamics: large uncertainty due to turbulence.
I Dynamics + Observations: reducing error and uncertainty.

C. Jones, A. Apte, A. Stuart, ...

I What is the information gain as a function of the number of tracers?
I How to design cheap practical strategies for systems with multiscale and

turbulent features?
10 / 23



Model set-up.

1. Underlying flows

Consider a d dimensional random flow modeled by a finite number of Fourier
modes with random amplitudes in periodic domain (0, 2π]d ,

~v(~x , t) =
∑
~k∈K

v̂~k (t) · ei~k·~x ·~r~k .

Each v̂k(t) follows an Ornstein-Uhlenbeck (O.U.) process,

dv̂~k (t) = −d~k v̂~k (t)dt + f~k (t)dt + σ~k dW v
~k

(t).

2. Observations
The observations are given by the trajectories of L noisy Lagrangian tracers,

d~xl (t) = ~v(~xl (t), t)dt + σx dW x
l (t)

=
∑
~k∈K

v̂~k (t) · ei~k·~xl (t) ·~r~k︸ ︷︷ ︸
Nonlinear!

dt + σx dW x
l (t), l = 1, . . . , L.

3. Conditional Gaussian data assimilation framework (d = 2)

U = (v̂1, ...v̂K)T, X = (x1,x , x1,y , ..., xL,x , xL,y )T

Observations: dX = PX (X)Udt + Σx dWX ,

Underlying flow: dU = −ΓUdt + F(t)dt + ΣudWu .

Conditional Gaussian framework

duI = [A0(t, uI) + A1(t, uI)uII ]dt

+ ΣI(t, uI)dWI(t),

duII = [a0(t, uI) + a1(t, uI)uII ]dt

+ ΣII(t, uI)dWII(t),
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1. Recovering random incompressible flows
First rigorous math theory

(Chen, Majda & Tong, Nonlinearity, 2014)

Recover or estimate the velocity ~v by observing L noisy trajectories Xj (t),

dXj

dt
= v(Xj (t), t) + σj Ẇj .

I Inherent nonlinearity in measurement.

I Build exact closed analytic formulas for the
optimal filter for the velocity field.

I Show in a rigorous way that an exponential
increase in the number of tracers for
reducing the uncertainty by a fixed amount
— a practical information barrier.

P =

∫
p ln

p

q
=

1

2

[
(µp − µq )T R−1

q (µp − µq )

]
︸ ︷︷ ︸

signal

+
1

2

[
tr
(

RpR−1
q
)
− |K| − ln det

(
RpR−1

q
) ]

︸ ︷︷ ︸
dispersion

I Signal measures the lack of information in the mean weighted by model covariance.

I Dispersion involves the covariance ratio. p ∼ N (µp, Rp ), q ∼ N (µq , Rq ) 12 / 23



How many tracers are in the real ocean? — Let’s look at the Argo program
http://www.argo.ucsd.edu/

13 / 23
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2. Noisy Lagrangian tracers
for filtering random rotating compressible flows

(Chen, Majda & Tong, JNLS 2015; Chen & Majda, Monthly Weather Review, 2016)

Starting model – 2D shallow water equation (SWE),

∂~u
∂t

+ ε−1~u⊥ = −ε−1∇η,

∂η

∂t
+ ε−1δ∇ · ~u = 0.

I ε = Ro, δ = Ro2Fr−2.
I Ro: the Rossby number, ratio of inertial to Coriolis.
I Fr: the Froude number.

The general solution of the SWE is given by a superposition of plane waves[
~u(~x , t)
η(~x , t)

]
=

∑
~k∈Z2,α∈{B,±}

ẑ~k,α exp(i~k · ~x − iω~k,αt)~r~k,α,

where the two kinds of modes are:

1. Geostrophically balanced (GB) modes: ω~k,B = 0; incompressible.

2. Gravity modes: ω~k,± = ±ε−1
√
δ|~k |2 + 1; compressible.

To describe the turbulent flow, we model the amplitude of each Fourier mode by an
O.U. process. 14 / 23



Rotating shallow water models with multiscale features:[
~u(~x , t)
η(~x , t)

]
=

∑
~k∈K,α∈{B,±}

v̂~k,α(t) exp(i~k · ~x)~r~k,α,

I Slow modes – random incompressible geostrophically balanced (GB) flows.

I Fast modes – random rotating compressible gravity waves.

dv̂~k,B = (−dB v̂~k,B + f~k,B(t))dt + σ~k,BdW~k,B ,

dv̂~k,± =
(

(−dg + iω~k,±)v̂~k,± + f~k,±(t)
)

dt + σ~k,±dW~k,±,

where ω~k,± ∝ ±ε
−1 with ε being Rossby number.

Highly nonlinear observations mixing GB and gravity modes!

Filter Name Forecast Model Observations
1. Full Filter Full Model Full Obs. Practical but Expensive
2. GB Filter GB Dynamics GB Modes Idealized
3. Reduced Filter I GB Dynamics Full Obs. Practical and Cheap
4. Reduced Filter II GB Dynamics, and Full Obs. Practical and Cheap

(3D-VAR Filter) Const. Diag. Post. Cov.

I Rigorous math theory: Comparable high skill in recovering GB modes for all the
filters in the geophysical scenario with small Rossby number ε.
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III. An Efficient Statistically Accurate Algorithm for Solving the
Fokker-Planck Equation in Large Dimensions

(Chen & Majda, JCP, 2017, PNAS, 2017; Chen, Majda & Tong, SIAM UQ, 2017)

Consider a general nonlinear dynamical system with noise,

du = F(u, t)dt + Σ(u, t)dW,

the associated Fokker-Planck equation is given by

∂

∂t
p(u, t) = −∇u

(
F(u, t)p(u, t)

)
+

1
2
∇u·∇u(ΣΣT (u, t)p(u, t)), with pt

∣∣
t=t0

= p0(u).

I Solving the Fokker-Planck equation for both steady state and transient phases is
an important topic in science, engineering, finance, and many other areas.

I Typical features of the PDFs in many applications: large dimensions and strong
non-Gaussianity (geophysical turbulence, engineering, neuroscience).

no general analytical solution for the Fokker-Planck equation

numerical approaches: finite element, finite difference, direct Monte Carlo simulation

suffering from curse of dimensionality!
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An efficient statistically accurate algorithm for conditional Gaussian systems.
(Chen & Majda, JCP, 2017, PNAS, 2017; Chen, Majda & Tong, SIAM UQ, 2017)

I Each sample is not a “dot” but a Gaussian distribution
that covers a sufficiently large volume.

I Use dynamics to find the optimal location and the
optimal volume of each sample.

I Optimization is based on semi-analytic formulae and
parallel runs — computationally efficient.

I Rigorous analysis shows that a much smaller number
of samples is needed compared with that in the direct
MC method.
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An efficient statistically accurate algorithms for conditional Gaussian systems.
Assume the dimension of uI is low while that of uII can be large,

duI = [A0(t ,uI) + A1(t ,uI)uII]dt + ΣI(t ,uI)dWI(t),

duII = [a0(t ,uI) + a1(t ,uI)uII]dt + ΣII(t ,uI)dWII(t).

I Sample L trajectories of uI (by Monte Carlo, for example).

I p(uII(t)) is computed from running L conditional Gaussian filter in a parallel way,

p(uII(t)) = lim
L→∞

1
L

L∑
i=1

p
(

uII(t)|ui
I(s ≤ t)

)
,

I p(uI(t)) is computed based on L samples with a Gaussian kernel method,

p
(
uI(t)

)
= lim

L→∞

1
L

L∑
i=1

KH

(
uI(t)− ui

I(t)
)
,

I The joint PDF is given by a Gaussian mixture,

p(uI(t),uII(t)) = lim
L→∞

1
L

L∑
i=1

(
KH(uI(t)− ui

I(t)) · p(uII(t)|ui
I(s ≤ t))

)
,

Practically, L ∼ O(100) is able to handle systems with Dim(uI) ≤ 3 and Dim(uII) ∼ O(10).
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The noisy Lorenz 63 (L-63) Model:

dx = σ(y − x)dt + σx dWx ,

dy =
(
x(ρ− z)− y

)
dt + σy dWy ,

dz = (xy − βz)dt + σzdWz .

σ = 10, ρ = 28, β = 8/3, σx = σy = σz = 10.
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Beating the curse of dimension with block decomposition (Chen & Majda, PNAS, 2017).

In many complex dynamical systems with multiscale structures, multilevel dynamics or
state-dependent parameterizations, the state variables can be decomposed in the following way

uk = (uI,k , uII,k ) with uI,k ∈ RNI,k and uII,k ∈ RNII,k ,

where each uk satisfies

duI,k = [A0,k (t, uI) + A1,k (t, uI,k )uII,k ]dt + ΣI,k (t, uI,k )dWI,k (t),

duII,k = [a0,k (t, uI) + a1,k (t, uI,k )uII,k ]dt + ΣII,k (t, uI,k )dWII,k (t),

and the initial values of uk and uk′ with k 6= k ′ are independent. With such block decomposition,

I The evolution of uII,k is coupled with that of all other uII,k′ .

I The evolution of RII,k has no interaction with that of RII,k′ — allowing the algorithm to solve
much larger dynamical systems with parallel runs.

Example 1: Two-layer Lorenz 96 models (Wilks, 2005; Arnold, Moroz & Palmer, 2013)
Example 2: Stochastic coupled FitzHugh-Nagumo models (Lindner et al., 2004)
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A stochastic coupled FitzHugh-Nagumo (FHN) model.
(Lindner et al., 2004; Muratov, Vanden-Eijnden & E, 2007)

ε
dui

dt
= ui −

1
3

u3
i + du(ui+1 + ui−1 − 2ui )− vi +

√
εδ1Ẇui ,

dvi

dt
= ui + a + δ2Ẇvi , i = 1, . . . ,N. N = 500 −→

I ε = 0.01� 1: a slow-fast structure of the model.

I a = 1.05 > 1, δ1 = 0.2, δ2 = 0.4, du = 0.5: Random noise drives the system above the
threshold level of global stability and triggers limit cycles intermittently.

I ui (0) = −2, vi (0) = 0.5 for all i . The model satisfies statistical symmetry.

Due to the statistical symmetric, only L = 1 samples is needed here! 21 / 23



Other Applications of Conditional Gaussian Systems

duI = [A0(t ,uI) + A1(t ,uI)uII]dt + ΣI(t ,uI)dWI(t),

duII = [a0(t ,uI) + a1(t ,uI)uII]dt + ΣII(t ,uI)dWII(t).

1. parameter estimation and improving stochastic parameterization.

2. understanding and predicting rare and extreme events.

3. exploring the causality between different processes using information theory
(causality v.s. correlation).

4. data assimilation and prediction of spatial-extended systems

Example 1: Boussinesq equation.

∇ · u = 0,

∂u

∂t
+ u · ∇u = −

1

ρ0
∇p + ν∇2u− gαT ,

∂T

∂t
+ u · ∇T = κ∇2T + F .

– Observe velocity u + noise.

– Recover temperature T .

Example 2: Stochastic skeleton model for the MJO.

(Thual, Majda & Stechmann, 2014)

ut − yv − θx = 0,

yu − θy = 0,

θt − ux − vy = H̄a− sθ,

qt + Q̄(ux + vy ) = −H̄a + sq
,

at = Γqa.

– Observe wave activity a + noise.

– Recover temperature q and velocity u, v .

(Chen and Majda, Monthly Weather Review, 2015)

22 / 23



Other Applications of Conditional Gaussian Systems

duI = [A0(t ,uI) + A1(t ,uI)uII]dt + ΣI(t ,uI)dWI(t),

duII = [a0(t ,uI) + a1(t ,uI)uII]dt + ΣII(t ,uI)dWII(t).

1. parameter estimation and improving stochastic parameterization.

2. understanding and predicting rare and extreme events.

3. exploring the causality between different processes using information theory
(causality v.s. correlation).

4. data assimilation and prediction of spatial-extended systems

Example 3: A simple dynamical model for the El Niño (Chen & Majda, PNAS, 2017).

Atmosphere

Ocean

SST

− yv − ∂xθ = 0

yu − ∂yθ = 0

− (∂x u + ∂y v) = Eq/(1− Q)

∂τU − c1YV + c1∂x H = c1τx

YU + ∂Y H = 0

∂τH + c1(∂x U + ∂Y V ) = 0

∂τT + µ∂x (UT ) = −c1ζEq + c1ηH

Latent heating:

Eq = αqT .

Wind stress:

τx = γ(u + up),

Wind Bursts & easterly mean trade wind:

up = ap(τ)sp(x)φ0(y),

dap

dτ
= −dp(ap − âp) + σp(TW )Ẇ (τ).

– Observe sea surface temperature (SST) T and wind burst noise ap .

– Recover u,U,H, θ....
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Summary

A conditional Gaussian framework for data assimilation and prediction is introduced.
Despite the conditional Gaussianity, the system remains highly nonlinear and is able to
capture the non-Gaussian features as observed in nature.

I Predicting the large-scale MJO via a physics-constrained
low-order nonlinear stochastic model.

I Understanding the information barrier and data assimilation
skill of recovering ocean flows with noisy Lagrangian tracers.

I An efficient statistically accurate algorithm for solving the
Fokker-Planck equation in high dimensions with strongly
non-Gaussian features.
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Recovery

I Other applications: parameter estimation, spatial extended physical systems ...

Thank you
(nan.chen@nyu.edu)
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Appendix 1: More details of parameter estimation.

1. Estimating one additive parameter γ∗ in a linear scalar model,

du = (A0u + A1γ
∗)dt + σudWu .

Direct approach Stochastic parameterized equations
Convergence rate algebraic exponential
Error as t →∞ zero usually non-zero
σu ↓ convergence rate ↑ convergence rate ↑

2. Estimating one multiplicative parameter γ∗ in a linear scalar model,

du = (A0 − γ∗u)dt + σudWu ,

Direct approach Stochastic parameterized equations
σu ↓ with A0 6= 0 convergence rate ↑ convergence rate ↑
σu ↓ with A0 = 0 independent of σu convergence rate ↑

3. Estimating one multiplicative parameter γ∗ in a cubic nonlinear scalar model,

du = (A0 − γ∗u3)dt + σudWu ,

Direct approach Stochastic parameterized equations
σu ↓ convergence rate ↓ convergence rate ↑

4. Estimating four different parameters a∗, b∗, c∗ and f∗ in a cubic nonlinear scalar model,

du = (a∗u + b∗u2 − c∗u3 + f∗)dt + σudWu ,

Direct approach Stochastic parameterized equations
σu ↓ may not converge to the truth convergence rate ↑



Appendix 2: Data assimilation and prediction of spatial extended turbulent systems.

a. Stochastic skeleton model for the MJO (Majda & Stechmann, PNAS 2009; Thual, M & S, JAS 2014)

ut − yv − θx = 0,

yu − θy = 0,

θt − ux − vy = H̄a− sθ,

qt + Q̄(ux + vy ) = −H̄a + sq
,

a = stochastic birth-death process,

The expectation of convective activity a satisfies at = Γqa.

b. Meridional (y direction) truncation + characteristic form. u, θ ⇐⇒ K ,R.

Kt + Kx = (Sθ − H̄A)/2, Rt − Rx/3 = (Sθ − H̄A)/3.

c. Design nonlinear filter with judicious model error

Observed:
dÂk

dt
= Γ

∑
−M+1≤s≤M

Q̂sÂk−s + σA
k ẆA

k ,

Unobserved:
dK̂k

dt
= (−ilk−d̄K

k )K̂k +
1

2

(
Ŝθk − H̄Âk

)
+ σK

k ẆK
k ,

dR̂k

dt
= ...,

dQ̂k

dt
=

[Conditional Gaussian system!]

Recover the initial values of K ,R and Q and run the dy-
namical model for prediction.

(Chen & Majda, Monthly Weather Review 2015)

d. Further applying an effectively reduced
filter for small-scale waves (k � 1).

dK̂k

dt
= −ilk K̂k︸ ︷︷ ︸

fast inertial oscillation

+
1

2

(
Ŝθk − H̄Âk

)
︸ ︷︷ ︸

slow external forcing

.

Average out the fast oscillations,

˜̂Kk =
Ŝθk − H̄Âk

2ilk
.
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Appendix 3: Derivations of the efficient statistically accurate algorithm.

First, the joint distribution of uI and uII at time t can be written as

p
(

uI(t), uII(t)
)

=

∫
p
(

uII(t), uI(t) | uI(s ≤ t)
)

p
(

uI(s ≤ t)
)

duI(s ≤ t) (3)

Here, according to the basic probability relationship p(x, y|z) = p(x|y, z) p(y|z), we have the following

p
(

uII(t), uI(t) | uI(s ≤ t)
)

= p
(

uII(t) | uI(s ≤ t)
)

p
(

uI(t) | uI(s ≤ t)
)
. (4)

The second term on the right hand side of (4) is actually a delta function peaking at the conditioned value of uI at
time t . In fact, if we replace the condition inside the PDF uI(s ≤ t) by ui

I(s ≤ t), we have

p
(

uI(t) | ui
I(s ≤ t)

)
= δ(uI(t)− ui

I(t)) (5)

In addition,

p(uI(s ≤ t)) = lim
L→∞

1

L

L∑
i=1

δ
(

uI(s ≤ t)− ui
I(s ≤ t)

)
. (6)

Therefore, inserting (4)–(6) into (3) yields

p
(

uI(t), uII(t)
)

=

∫
p
(

uII(t), uI(t) | uI(s ≤ t)
)

p
(

uI(s ≤ t)
)

duI(s ≤ t)

= lim
L→∞

1

L

L∑
i=1

δ
(

uI(t)− ui
I(t)
)

p
(

uII(t) | ui
I(s ≤ t)

) (7)

Next, we make use of the kernel approximation KH(uI(t)− ui
I(t)) for δ

(
uI(t)− ui

I(t)
)

. Note that in the limit

L→∞ the bandwidth goes to zero and the kernel approximation converges to δ
(

uI(t)− ui
I(t)
)

, which leads to

(7) that is consistent with solving the Fokker-Planck equation for the joint PDF.



Appendix 4: Rigorous analysis of the error in the efficient statistically accurate
algorithms.

Kernel density estimation for the joint PDF.

p̃t (uI, uII) =
1

L

L∑
i=1

KH ((uI, uII)− (ui
I(t), ui

II(t))),

with KH (uI, uII) = (2πH)
−

NI+NII
2 exp

− 1

2H

NI∑
i=1

c2
i u2

I,i −
1

2H

NII∑
i=1

c2
i+NI

u2
II,i

 .
Hybrid method — kernel density estimation for uI and conditional Gaussian mixture for uII.

p̂t (uI, uII) =
1

L

L∑
i=1

KH (uI − ui
I(t))p(uII|u

i
I(s ≤ t)).

with KH (uI) = (2πH)
−

NI
2 exp

− 1

2H

NI∑
i=1

c2
i u2

I,i

 .
The mean integrated squared error (MISE) (of the hybrid method) is the average L2 distance to the true density:

MISE = E
∫
|pt (uI, uII)− p̂t (uI, uII)|

2duIduII

= E
∫
|p̂t (uI, uII)− p̄t (uI, uII)|

2duIduII︸ ︷︷ ︸
Bias

+

∫
|pt (uI, uII)− p̄t (uI, uII)|

2duIduII︸ ︷︷ ︸
Variance



Theorem (C., Majda, Tong): error estimation of the hybrid method.
The two parts of MISE for the hybrid method are bounded:

p̂t Variance ≤
1

L
E

 NI∏
i=1

(πHc2
i )det(πRII(t))

−
1
2

,

p̂t Bias ≤
1 + δ

4
H2J

 NI∑
i=1

c2
i ∂

2
u2

I,i
pt (uI, uII)

 +
1 + δ−1

2
M2H3

 NI∑
i=1

c2
i

3

J(M(uI, uII)),

(8)

where J(f (uI, uII)) denotes the integral
∫

f 2(uI, uII)duIduII. The function M(uI, uII) is an upper bound of the third
order directional derivative of pt in the direction of uI around (uI, uII).
By taking δ close to zero and ignoring the higher order term in the bias upper bound, we recover an upper bound
similar to the asymptotic MISE (AMISE) , except that our method also consists a random component of RII(t):

AMISE ≤
1

L
E

 NI∏
i=1

(πHc2
i )det(πRII(t))

−
1
2

+
1

4
H2J

 NI∑
i=1

c2
i ∂

2
u2

I,i
pt (uI, uII)

 ,
which gives

H ∼ O

(
L
− 2

4+NI

)
and consequentially MISE ∼ O

(
L
− 4

4+NI

)
.

MISE has no dependence on NII — the dimensional of uII.



p̃t : Kernel density estimation for the joint PDF.

p̂t : Hybrid method.

Theorem (C., Majda, Tong): Comparison of the two methods.
The error in the bias

p̃t Bias bound ≥ p̂t Bias bound,

and in the variance

p̃t Variance bound

p̂t Variance bound
=

H−
NII
2
∏NII

i=1 ci+NI

E
√

det(RII(t))
−1 .

We have:

p̃t : MISE ∼ O

(
L
− 4

4+NI+NII

)

p̂t : MISE ∼ O

(
L
− 4

4+NI

)

If one wants the performance of the direct kernel method to be the same as the hybrid
method, then the sample size needs to increase to

L̃ = L
4+NI+NII

4+NI ,

which can be many magnitudes larger than L.



Recovery of the PDFs of a 6D conceptual dynamical model for turbulence:

du = (−duu + Fu +
5∑
i

γi u vi )dt + σudWu ,

dvi = (−dvi vi − γi u2)dt + σvi dWvi , i = 1, . . . , 5.



Appendix 5: Data assimilation of ocean flows using Lagrangian tracers
More realistic scenario — nonlinear coupling of GB and gravity modes:

dv̂~k,B = (−dB v̂~k,B + f~k,B(t))dt + σ~k,BdW~k,B(t),

dv̂~k,± =
(

(−dg + iω~k,±+i v̂~k,B)v̂~k,± + f~k,±(t)
)

dt + σ~k,±dW~k,±(t).

Linear models without i v̂~k,B are used as imperfect forecast models such that the

corresponding filters belong to the conditional Gaussian framework.
I Assessing model error for approximate filters through information theory.

Combination of three information measures (Chen & Majda, 2015; Branicki & Majda, 2014).

1. Shannon entropy of residual∼ root-mean-square error.

2. Mutual information∼ pattern correlation.

3. Relative entropy: an indicator of assessing the disparity in the amplitudes and peaks — important in
quantifying extreme events!

P(π, πM ) =

∫
π(u) ln

π(u)

πM (u)
du

310 315 320 325 330 335 340 345
−5

0

5
 #1:     RMSE = 1.1217  Corr = 0.6212

 

 

310 315 320 325 330 335 340 345
−5

0

5
 #2:     RMSE = 1.1582  Corr = 0.5829

−5 0 5
0

0.5

1

 

 

−5 0 5
0

0.5

1

π πM

u u
M



Appendix 6: Nonlinear Laplacian Spectrum Analysis (NLSA).

I NLSA is a nonlinear data analysis technique that combines ideas from lagged embedding
(Packard et al. 1980; Sauer et al. 1991), machine learning (Coifman and Lafon 2006; Belkin
and Niyogi 2003), adaptive weights and spectral entropy criteria to extract spatiotemporal
modes of variability from high-dimensional time series.

I These modes are computed utilizing the eigenfunctions of a discrete analog of
Laplace-Beltrami operator, which can be thought of as a local analog of the temporal
covariance matrix employed in EOF and EEOF techniques, but adapted to the nonlinear
geometry of data generated by complex dynamical systems.

I NLSA by design requires no ad hoc pre-processing of data such as detrending or
spatiotemporal filtering of the full data set and it captures both intermittency and low
frequency variability.

I The NLSA modes have higher memory and predictability compared with those extracted via
EEOF analysis.



Procedure:

1. construct a time lagged embedding dataset utilizing Takens’ method of delay (Takens et al.
1981). Denote q the lagged embedding window size. Then the lagged embedding matrix
can be written as

X =


z1 z2 · · · zn−q+1
z2 z3 · · · zn−q+2
.
.
.

.

.

.
. . .

.

.

.
zq−1 zq · · · zn−1

zq zq+1 · · · zn

 .

2. Compute the kernel matrix K with entries Kij = K (X(ti ),X(tj )) given by

K (X(ti ),X(tj )) = exp

(
−
‖X(ti )− X(tj )‖2

εξ(ti )ξ(tj )

)
,

where ξ(ti ) = ‖X(ti )− X(ti−1)‖ and X(ti ) = (zi , . . . , zi+q−1)T .
The kernel matrix K can be thought as a nonlinear analogy of the temporal covariance
matrix in the singular spectrum analysis (Ghil et al. 2002), while this nonlinearity is crucial in
capturing both intermittency and low-frequent variability.

3. The NLSA temporal patterns φ(ti ) are then determined by the eigenvectors of the Laplacian
matrix L = I − P,

Lφk = λkφk , φk = (φ1k , φ2k , . . . φSk )T
,

where

qi =
S∑

j=1

Kij , K ′ij =
Kij

qi qj
, di =

S∑
j=1

K ij′, Pij =
Kij

di
, S = n − q.
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