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Introduction

» High-resolution, site-specific surfaces winds (e.g.
transport of airborne particles, wind energy production)

» Global Climate Models (GCMs): coarse resolution
(>100km) ===l Cannot model surface winds

» Downscaling:

* Methods used to infer local-scale climate
information (predictands) from coarsely
resolved climate models (predictors)

- Dynamical vs Statistical downscaling




Dynamical downscaling (DD)

* Nest Regional climate models (RCMSs) in the grids
of GCMs

* Physically based s/

* Computationally expensive




Statistical downscaling (SD)

* Derive a transfer function (TF) from empirical relationships
between predictors and predictands

* Flexible functional form of TFs (linear, nonlinear)

* Cheap computational cost g/

new prediction




* DD and SD: Comparative skills in
predicting historical data

* SD: cheap computational cost

SD: most commonly applied in predicting scalar variables
(Temperature, Precipitation)




Research Focus

* Assess how well SD can do in predicting surface wind
components (vector)ss==p- Directional Characteristics

* Predictive anisotropy: predictability of surface wind
components varies with the direction of projection.
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Research Objectives

1. to provide a global characterization of statistical
predictability of surface wind components

2. to compare the efficiency of linear and nonlinear
TFs

3. to build a general framework to explain
characteristics of statistical predictability with an

emphasis on predictive anisotropy (contributing
factors)

- wrong functional form of TFs (i.e. linear)?
- physical factors?
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Methodology

* Predictands: surface wind components projected onto 0O, 10, 20,...360 deg at
2109 land stations

* Predictors: Temperature (T), Geopotential height (Z2), zonal (U), meridional (V) wind
components at 500 mb from NECP2 reanalysis

* Prediction period: 1980-2012, Summer/Winter, Daily/Monthly
* Predictability: R"2 = corr*2(Obs, Pred)

90

75
60

45
30
15
0
-15
=30

-45
-60
-75

-90

-120  -90




Predictive Information
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Culver AM, Monahan AH. The statistical predictability of surface winds over
western and central Canada. Journal of Climate. 2013 Nov;26(21):8305-22.
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average of top 2%

Prediction at each station gird predictability
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TF: linear regression




Metrics of Predictability: min(H), max (H), Oé(H)

Predictive anisotropy
man(11)
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Potential factors that can influence
predictability

* Topographic complexity

* Variability and shape of fluctuations of
surface wind components
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Daily Winter 200 Monthly Winter
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p — 1  Directional maxima (minima) tend to align
p — —1 Directional maxima (minima) tend to be orthogonal

p — 0 No directional relationships
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Idealized model

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

U(0) = Noise + Signal

[\

» zero linear correlation with predictors ® Perfect linear correlation with predictors
° |sotropic ® vary with direction
® non-Gaussian ® Gaussian

I1(0) = corr?(U(6), Signal)
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Idealized model
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ldealized model

Signal-to-noise ratio:

accounts for observed
characteristics of linear
predictability (e.g. predictive
anisotropy)
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Linear vs nonlinear TFs

* Nonlinear prediction of surface wind components
IS carried out at the same 2109 stations

* Neural network (NN), Support vector machine
(SVM), Random Forest (RF)
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average of top 2%

Prediction at each station gird predictability
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| Systematic improvement by NL

no substantial improvement by NL
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= 10
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No compelling evidence to suggest

| that strong nonlinear relationships exist

between large-scale predictors and

| surface wind components
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predictive anisotropy (contributing factors)

!

- wrong functional form of TF (i.e. linear TF)? X
- physical factors?

Can predictive anisotropy be explained by some
unknown physical factors?
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Simulation of linear predictability by RCMs and FEeanaIysis
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Labels Driving reanalysis Regional models Modeling Group Project References
NA1 ECMWF-ERAINT Canadian Regional Climate Model4 Canadian Centre for Climate Modelling CORDEX Scinocca et al., 2016
(CanRCM4) and Analysis (CCCma)
NA2 NCEP2 Weather Research & Forecasting Pacific Northwest National Lab, US NARCCAP Mearns et al., 2007,updated 2014
Model (WRF)
EUR1 ECMWE-ERAINT Rossby Centre regional atmospheric  Swedish Meteorological and Hydrologi- CORDEX Strandberg et al., 2015
model (RCA4) cal Institute (SMHI)
EUR2 ECMWF-ERAINT Canadian Regional Climate Model 4 Canadian Centre for Climate Modelling CORDEX Scinocca et al., 2016
(CankCM4) and Analysis (CCCma)
EAS1 ECMWEF-ERAINT HadGEM3-RA National Institute of Meteorological Re- CORDEX Davies et al., 2005
search (NIMR), Korea
EAS2 NCEP2 Weather Research & Forecasting Seoul National University (SNU), Korea CORDEX Skamarock et al., 2005

Model (WRF)

NCEP2
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Simulated predictive
Obs DJF o(11) DUF (1) anisotropy is substantially

= weakened in mountainous
region.

Small-scale physical
processes (not captured
by RCMs) contribute to
predictive anisotropy
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North America, (Europe, East Asia)

Reanalysi
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Predictive anisotropy can be explained by small-scale physical processes.
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Conclusions

* Predictive anisotropy is a common feature

* Surface wind components are better predicted along the directions
characterized by more variable and near Gaussian fluctuations.

* Poor predictability is often found in topographic complex regions
(e.g. mountainous regions), along the directions of weak and non
Gaussian fluctuations of surface wind components.

* No concrete evidence to show that the relationships between free-
tropospheric predictors and surface wind components are
nonlinear.

* Small scale physical processes (not captured by RCMs) contribute
to predictive anisotropy.

* Future study is needed to identify physical processes
responsible for predictive anisotropy.
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