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➤ High-resolution, site-specific surfaces winds (e.g. 
transport of airborne particles, wind energy production)

➤ Global Climate Models (GCMs): coarse resolution 
(>100km)

➤ Downscaling: 
• Methods used to infer local-scale climate 

information (predictands) from coarsely 
resolved climate models (predictors)

• Dynamical vs Statistical downscaling

Introduction
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Cannot model surface winds 



Dynamical downscaling (DD) 
Nest Regional climate models (RCMs) in the grids 
of GCMs


Physically based


Computationally expensive
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Statistical downscaling (SD)
Derive a transfer function (TF) from empirical relationships 
between predictors and predictands


Flexible functional form of TFs (linear, nonlinear)


Cheap computational cost

Local-scale predictands

TF(X) new prediction

Large-scale predictors
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DD and SD: Comparative skills in 
predicting historical data


SD: cheap computational cost

SD: most commonly applied in predicting scalar variables 
(Temperature, Precipitation) 
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Research Focus
Assess how well SD can do in predicting surface wind 
components (vector)


Predictive anisotropy: predictability of surface wind 
components varies with the direction of projection.

Directional Characteristics 
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Predictability of

Direction of projection 



Research Objectives
1. to provide a global characterization of statistical 

predictability of surface wind components


2. to compare the efficiency of linear and nonlinear 
TFs


3. to build a general framework to explain 
characteristics of statistical predictability with an 
emphasis on predictive anisotropy (contributing 
factors)
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- wrong functional form of TFs (i.e. linear)? 
- physical factors?



Methodology
Predictands: surface wind components projected onto 0, 10, 20,…360 deg at 
2109 land stations


Predictors: Temperature (T), Geopotential height (Z), zonal (U), meridional (V) wind 
components at 500 mb from NECP2 reanalysis


Prediction period: 1980-2012, Summer/Winter, Daily/Monthly


Predictability: R^2 = corr^2(Obs, Pred)

U(✓)

Observation stations

Predictands
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Predictive Information

Culver AM, Monahan AH. The statistical predictability of surface winds over 
western and central Canada. Journal of Climate. 2013 Nov;26(21):8305-22.
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Surface station

Prediction at each station

500mb
X(i,j)=[T,Z,U,V]

Ûij(✓) = TF (Xij)

average of top 2% 
gird predictability

gird predictability

predictability of

predictive information at 
each grid point

TF: linear regression
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Metrics of Predictability: min(⇧),max(⇧),↵(⇧)

z(m) z(m)

1 2

perfect 
prediction

WeakStrong
Predictive anisotropy
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Predictability

Predictive 
anisotropy
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Potential factors that can influence 
predictability

Topographic complexity


Variability and shape of fluctuations of 
surface wind components
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Daily WinterTopographic Complexity Std of U Kurtosis of U

Flat Complex

Pdf(X)

More/less complex terrain

less/more variable U 

non-Gaussian/near-Gaussian

Low/High Predictability

directional variation of 
Std, Kurtosis of U

Predictive anisotropy

directional variation of 
terrain

Pdf(Y,X)/Pdf(X)

Weak



⇢ ! 1 Directional maxima (minima) tend to align
⇢ ! �1 Directional maxima (minima) tend to be orthogonal 
⇢ ! 0 No directional relationships 
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Rank correlation coefficient

Terrain

direction of

more/less complex terrain

less/more variable 
fluctuation 

non-Gaussian/near-Gaussian

direction of Low/High Predictability

U Variability

U Distribution
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⇧(✓) = corr

2(U(✓), Signal)

U(✓) = Noise+ Signal

zero linear correlation with predictors 
Isotropic 
non-Gaussian

Perfect linear correlation with predictors 
vary with direction 
Gaussian

Idealized model
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Idealized model

where,

Variance of 
Variance of 

Noise Signal

Kurtosis of 
Kurtosis of 

 Simulate metrics:

(Noise) 
(Signal) 

(Noise) 
(Signal) 



Signal-to-noise ratio:
accounts for observed 
characteristics of linear 
predictability (e.g. predictive 
anisotropy)

Origin of the noise:
physical factors?
nonlinear predictor-
predictand relationship?

Idealized model
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Linear vs nonlinear TFs
Nonlinear prediction of surface wind components 
is carried out at the same 2109 stations


Neural network (NN), Support vector machine 
(SVM), Random Forest (RF)

Observation stations
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Surface station

Prediction at each station

500mb
X(i,j)=[T,Z,U,V]

average of top 2% 
gird predictability

gird predictability

predictability of

predictive information at 
each grid point

TF: nonlinear (NN, SVM, RF)
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1:1
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25th

50th

75th
[ ]

Systematic improvement by NL
no substantial improvement by NL
e.g.,

No compelling evidence to suggest 
that strong nonlinear relationships exist 
between large-scale predictors and 
surface wind components

� =
⇧(✓)BestNL

⇧(✓)LR

� = 10
⇧NL = 0.1

⇧LR = 0.01



predictive anisotropy (contributing factors)
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- wrong functional form of TF (i.e. linear TF)? 
- physical factors?

Can predictive anisotropy be explained by some 
unknown physical factors?



24NCEP2

DJF, JJA
Daily

Simulation of linear predictability by RCMs and Reanalysis

NA

EUR
EAS



Obs

Mt stations

min(⇧) max(⇧)

RCMs cannot capture small-scale physical processes (e.g. associated with surface 
heterogeneity) 25



Obs
↵(⇧)

Small-scale physical 
processes (not captured 
by RCMs) contribute to 
predictive anisotropy

Simulated predictive 
anisotropy is substantially 
weakened in mountainous 
region.
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var(signal)

var(U)
|ê

max(⇧)

⇡ var(signal)

var(U)
|êmin(⇧)

RCM1 RCM2 Reanalysis Obs

weak 

Strong 

Predictive anisotropy can be explained by small-scale physical processes.

small-scale physical processes

large-scale physical processes        SNR

            SNR

North America, (Europe, East Asia)
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Conclusions
Predictive anisotropy is a common feature


Surface wind components are better predicted along the directions 
characterized by more variable and near Gaussian fluctuations.


Poor predictability is often found in topographic complex regions 
(e.g. mountainous regions), along the directions of weak and non 
Gaussian fluctuations of surface wind components.


No concrete evidence to show that the relationships between free-
tropospheric predictors and surface wind components are 
nonlinear.


Small scale physical processes (not captured by RCMs) contribute 
to predictive anisotropy.


Future study is needed to identify physical processes 
responsible for predictive anisotropy.
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