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Atmospheric Predictability

Weather forecast at 45N, 60W
21 slightly different initial conditions
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figure from http://cola.gmu.edu/grads/gadoc/ensembles.html



Oceanic Predictability

170 meter temperature trajectories for ensemble A
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Figure : Trajectories of leading principal component of 170m ocean

temperature simulated by GFDL model; from Griffies and Bryan (1997).
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Measure of Predictability

ensemble spread

total variance

Equivalent measure: signal-to-total ratio
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Predictable Component Analysis

Find the linear combination of variables that maximizes average
initial-condition predictability
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Average Predictability Time (APT)
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Most Predictable Component in Climate Models

Maximizes Average Predictability Time (APT).
CMIP3 pre-industrial control simulations
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Srivastava and DelSole (2016; PNAS)
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Atmosphere- Slab Ocean Model
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No ocean circulation!

courtesy of Abhishekh Srivastava. upper figure from COMET program
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Predictable Component 1
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Interactive ocean circulations are not essential in determining the
most predictable pattern.
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Empirical Prediction Model tr =L,
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Skill of Most Predictable Component

(€) MSE Skill
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Interactive ocean circulations seem to enhance predictability that
already exists without ocean dynamics.
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Single Depth
Atmosphere
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Deser et al. (2003): Understanding the Persistence of Sea Surface Temperature Anomalies in Midlatitudes,
J. Climate, 16, 57-72
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Dynamics of Mixed Layer Model

H
D = Pop™ ~ 5.4 months.
A
feedback parameter A 15Wm?2 K1
density of seawater po 1000 kg m—3

specific heat of seawater ¢, 4180 J kg™! K1
depth of mixed layer H 50m
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Skill of Most Predictable Component
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Two-Box Model

heat flux heat flux
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BOX 1 BOX 2
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Ti=-ATy+m
ETQ =-ATo+m
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If stochastic forcing of the two boxes are independent, then APT is
bounded by the predictabilities of the individual boxes:
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If stochastic forcing of the two boxes are independent, then APT is
bounded by the predictabilities of the individual boxes:

< APT <

>
> =

No enhancement of predictability.
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But atmospheric heat fluxes are spatially coherent.

| | | | | | | |
(a) NAO heat flux forcing derived from ECMWF Interim Reanalysis
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Delworth, T.L. and F. Zeng, 2016: J. Climate, 29, 941-962.
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Assume forcing is spatially coherent

() =(o" ) (7))

Note that the forcing term is energetically balanced:
it cancels out in the linear combination T + €T5.
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ACF

1.0

0.8

0.6

0.0

Autocorrelation Functions from Two-Box Model
A =6 months, €=0.9

tau (years)

22 /47



What's the Mechanism

heat flux heat flux
J J
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Theorem from Tippett and Chang (2002):

» The linear stochastic model with minimum predictability is
uncorrelated in normal-mode space.

> The minimum predictability depends only on the eigenvalues.

Corollary: For diagonal dynamical operator, correlated stochastic forcing
yields higher predictability than uncorrelated forcing.
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An atmospheric response to SST (i.e, “feedback”) is
not necessary to enhance predictability.
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Criticisms

Ocean slab models...

> give inconsistent time-lagged (low-pass) heat flux-temperature
relations relative to observations and coupled models.

» cannot explain the high coherence of North Atlantic temperature
and salinity at decadal-or-longer time scales.

> cannot explain the two-time scale decay of the autocorrelation of
North Atlantic SST.

» produce unrealistic responses to NAO forcing.

Hall and Manabe (1997; J. Climate); Zhang et al. (2016; J. Climate);
Cane et al. (2017; J. Climate); Delworth et al. (2017; J. Climate)
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Coherence between SST and SSS in Observations
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Hall and Manabe (1997, Climate Dynamics)
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Stochastic Models Can Reproduce SST-SSS Coherence

Surface fluxes of heat and freshwater both involve evaporation:

cphT =—LE +sensible + radiative + diffusion + entrainment
hS = +S(E — P) +diffusion + entrainment
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Parameterized evaporation as
E~ —-XeT + ng
This leads to the coupled stochastic model
TN [(-Ar—=Xe O T nr L/Cy
(6)- (" ) (8) = (50) = (5

There is coupling in the dynamical operator and in the forcing.
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coherence
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Predictions of AMO: AMOC is a Useful Predictor

0 10 20 30
Lead (years)

——  AMO(t+lead) = ¢ AMO(t)
——  AMO(t+lead) = ¢ AMO(t) + 1 Indexl
——  AMO(t+lead) = ¢ AMO(t) + B2 Index2

Trenary and DelSole, 2016: Does the Atlantic Multidecadal Oscillation Get its Predictability from the
Atlantic Meridional Overturning Circulation?, J. Climate, 29, 5267-5280
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Stommel-like Box Model (Griffies and Tziperman)
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Stommel Box Model Equations
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No T-S coupling through surface fluxes
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Autocorrelation Function of Temperature
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CMIP5 Autocorrelation Function of Temperature

Autocorrelations of Subpolar NA Temperature (CM2.1)
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ACF Based on Oscillatory Mode

Temperature Box 2
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Squared Coherency
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R-Square with and without AMOC index

R-square for Predicting T in Box 2
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Predictability

R-square
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The low-frequency coherence between SST and SSS is not a
discriminating feature for ocean circulation, since stochastic
models with and without ocean circulation can reproduce it.
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The low-frequency coherence between SST and SSS is not a
discriminating feature for ocean circulation, since stochastic
models with and without ocean circulation can reproduce it.

However, the enhanced predictability of SST after adding SSS as a
predictor is a discriminating feature.
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Predictability of North Atlantic in CMIP5 Models

R-square for Predicting T
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Predictability of North Atlantic in CMIP5 Models

R-square for Predicting T
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Predictability of North Atlantic in ODA

ECDAv3.1 1961-2010
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Predictability of North Atlantic in ODA

R-square for Predicting T
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Summary

1.

The most predictable components of climate models with and
without interactive ocean circulation are remarkably similar.

This result implies that ocean dynamics is not essential for the
existence of multi-year predictability.

Predictability of certain individual patterns are longer in the coupled
model than in slab model.

Predictability of slab models can be higher than that of individual
slabs for spatially correlated stochastic forcing.

Slab models can reproduce coherence between temperature and
salinity at low frequencies, if the influence of evaporation is taken
into account.

Stommel box model can

» Generate 2-time scale decay of ACF of temperature

» Reproduce coherence between temperature and salinity

» Reproduce enhanced predictability when AMOC included.

» Reproduce predictive skill due to including salinity as predictor.
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