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Walks on the nonnegative integers
We want to study walks on the nonnegative integers.
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To make the walks easier to see, we give each step a horizontal
component—we replace the one-dimensional step i with the
two-dimensional step (1, i):



An algebraicity theorem

We want to count walks on the nonnegative integers N with
integer steps. For a set W of walks, we define its generating
function to be

∑
w∈W zst(w), where st(w) is the number of steps

in w . (We could use more general weights on the steps.)

This talk is about the following theorem: Let S be a finite set of
steps. The the generating function for walks in N from 0 to 0
(excursions) with steps in S is algebraic.

(The same is true for walks starting at 0 that may end
anywhere, or for walks from i to j .)

First proved in 1980 (G).
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Monsky’s proof

I will discuss primarily a little-known proof of this theorem by
Paul Monsky, Generating functions attached to some infinite
matrices, Electronic J. Combin. 18 (2011), #P5.

Monsky was interested in this problem because of applications
to Hilbert-Kunz theory.

Monsky reduces the problem to that of counting Motzkin paths,
with weights in an arbitrary ring.
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Motzkin paths

Motzkin paths (or Motzkin walks) are walks on N starting and
ending at 0 with step set {−1,0,1}.

We’ll call −1 a down step, 0 a flat step, and 1 an up step.



We can count Motzkin paths using the “first return"
decomposition:

A nonempty Motzkin path is either a flat step
followed by a Motzkin path

or an up step followed by a Motzkin path, then a down step,
then another Motzkin path:
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The functional equation

Now let us assign the weights U to an up step, F to a flat step,
and D to a down step, where U, F , and D are elements of a
ring (not necessarily commutative), and weight a Motzkin path
by the product of the weights of its steps.

Let M be the sum of the weights of all Motzkin paths, assuming
that it is summable. Then the first return decomposition gives

M = 1 + FM + UMDM.

We may consider more general Motzkin paths in which the up,
flat, and down steps come in different “colors”, with different
weights. Then the equation still holds where U is the sum of the
weights of the up steps, F is the sum of the weights of the flat
steps, and D is the sum of the weights of the down steps.
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Now let S be a finite set of integers. We next show how every
walk from 0 to 0 with steps in S can be reduced to a Motzkin
path.

Let t = max{ |s| : s ∈ S }. For any integer n (which we think of
as the height of a point on a path), we define its zone to be
bn/tc and its level to be n mod t .

So if t = 2, for example, we have

Zone 0

Zone 1

Zone 2

Levels
0

0

0

1

1

1
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So to convert a path with steps in S to a Motzkin path, we
contract the zones—we replace a point at height n with a point
at height bn/tc.

An example with t = 2:
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Colored steps

The original path can’t be recovered from the contracted
Motzkin path, but if we “color" each step by its starting and
ending level then we can recover the original path. We’ll assign
a weight of Ui,j to an up step from level i to level j , and similarly
for weights Fi,j and Di,j .

U0,0 D0,1 U1,1

U1,0 D0,0

D0,1

F0,1

Knowing the Motzkin path and the colors of each step enables
us to reconstruct the original path.
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Note that a step of color (i , j) must be followed by a step of
color (j , k) for some k .

So we can make the weights multiply correctly taking the
weights Ui,j , Fi,j , and Di,j to be matrices.

Let Ai,j be the t × t matrix (rows and columns indexed
0,1, . . . , t − 1) with a 1 in the (i , j) position and zeros elsewhere.

We take
Ui,j = Fi,j = Di,j = Ai,jz.
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Let

U =
∑

j−i+t∈S

Ui,j , F =
∑

j−i∈S

Fi,j , D =
∑

j−i−t∈S

Di,j .

Then the solution M to

M = 1 + FM + UMDM, (∗)

is a t × t matrix whose (0,0) entry is the generating function for
walks in N from (0,0) with steps in S. Extracting the entries
from (∗) gives a system of equations that shows that the entries
of M are algebraic.



Example: Basketball walks

Basketball walks are walks with the step set {−2,−1,1,2}.
They were named by A. Ayyer and D. Zeilberger (2007) and
recently studied by J. Bettinelli, E. Fusy, C. Mailler, and and L.
Randazzo (2016) using bijective methods, and by C. Banderier,
C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D.
Nguyen, and M. Wallner (2017) using the kernel method.

Closely related paths (essentially the same but with different
weights) were counted by Jacques Labelle and Yeong-Nan Yeh
(1989).
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For basketball walks we have t = 2, so we work with 2× 2
matrices. We have three types of up steps:

U0,0 U1,0 U1,1

So

U = (A0,0 + A1,0 + A1,1)z =

(
1 0
1 1

)
z

Similarly, we have

F = (A0,1 + A1,0)z =

(
0 1
1 0

)
z

D = (A0,0 + A0,1 + A1,1)z =

(
1 1
0 1

)
z



So our fundamental equation

M = 1 + FM + UMDM

becomes(
M0,0 M0,1
M1,0 M1,1

)
=

(
1 0
0 1

)
+

(
0 1
1 0

)(
M0,0 M0,1
M1,0 M1,1

)
z

+

(
1 0
1 1

)(
M0,0 M0,1
M1,0 M1,1

)(
1 1
0 1

)(
M0,0 M0,1
M1,0 M1,1

)
z2



Multiplied out, this gives

M0,0 = 1 + zM1,0 +
(

M0,0
2 + M1,0M0,0 + M1,0

2
)

z2

M0,1 = zM1,1 +
(
M0,0M0,1 + M1,1M0,0 + M1,1M0,1

)
z2

M1,0 = zM0,0 +
(

M0,0
2 + 2 M1,0M0,0

+M1,0
2 + M1,0M0,1 + M1,0M1,1

)
z2

M1,1 = 1 + zM0,1 +
(
M0,1 + M1,1

) (
M0,0 + M1,1 + M1,0

)
z2

If we set f = M0,0 then we can eliminate M0,1, M1,0, and M1,1 to
get

1− (1 + 2z)f + (2 + 3z)zf 2 − (1 + 2z)zf 3 + z4f 4 = 0

and we find that

f = 1+2z2+2z3+11z4+24z5+93z6+272z7+971z8+3194z9+· · ·
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We can express the equation for f in a simpler form: Set
g = zf , so g satisfies

z − (1 + 2z)g + (2 + 3z)g2 − (1 + 2z)g3 + zg4 = 0.

Solving for z gives

z = g
(1− g2)2

(1 + g3)2

So

g = zf =
(

z
(1− z2)2

(1 + z3)2

)〈−1〉



Other Proofs

There are three types of proofs of the algebraicity theorem that
I know of.

I Factorization
I System of equations
I Formal languages



Factorization

The first proof (G., 1980) is based on a simple factorization for
walks in Z (“Weiner-Hopf factorization"). We split the walk into
three parts by cutting it at its first and last lowest point:

The middle part of this factorization gives the walks that we
want to count. This leads to a factorization of the generating
function

1
1−

∑
s∈S tsz

that gives the generating function for the desired walks.



Marko Petkovšek (1998) used a different method to obtain the
same type of formula.

Cyril Banderier and Philippe Flajolet (2002) obtained the same
formula using the kernel method.
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Systems of equations

Monsky’s method gives a system of equations.

Other approaches yielding a system of equations were given by
Jacques Labelle and Yeong-Nan Yeh (1990), Donatella Merlini,
D. G. Rogers, Renzo Sprugnoli, and M. Cecilia Verri (1999),
and Philippe Duchon (2000).
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Formal languages

(1) The intersection of a context-free language (algebraic gf)
and a regular language (rational gf) is context-free.

Represent a step of +n by Un and −n by Dn. The set of all
such strings with a given set of steps (taking care of
multiplicities) is a regular language; intersect it with the
context-free Dyck language.

(2) A language accepted by a push-down automaton is
context-free.

The language of nonnegative walks with a given finite set of
steps is easily seen to be accepted by a push-down automaton.
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