Big trees

Steven N. Evans

February, 2017

Collaborators

Hye Soo Choi (Berkeley)

Rudolf Grűbel (Hannover)

Anton Wakolbinger (Frankfurt)

Figure: Big trees abound in biology (and many other disciplines). What does it mean to say that two big trees are similar / different? Is there a PRINICIPLED way to make this distinction?

All who wander are not lost

- A sequence of points on the real line wanders off to infinity if it eventually leaves any bounded set, never to return.
- Can we delineate different ways in which such sequences wander off to infinity?
- Yes! The sequence may converge to $+\infty$, converge to $-\infty$, or neither.

All who wander are not lost

- A sequence of points on the real line wanders off to infinity if it eventually leaves any bounded set, never to return.
- Can we delineate different ways in which such sequences wander off to infinity?
- Yes! The sequence may converge to $+\infty$, converge to $-\infty$, or neither.

All who wander are not lost

- A sequence of points on the real line wanders off to infinity if it eventually leaves any bounded set, never to return.
- Can we delineate different ways in which such sequences wander off to infinity?
- Yes! The sequence may converge to $+\infty$, converge to $-\infty$, or neither.

Packing the real line into an interval

Figure: We can map the whole real line bijectively to an (open) interval. Converging to $\pm \infty$ corresponds to converging (in the usual sense) to one of the end-points of the interval.

Packing the plane into a disk

- We can map the plane bijectively to an (open) disk
- A sequence wandering off to infinity converges if it has an asymptotic direction.
- Convergence corresponds to converging (in the usual sense) to one of the boundary points of the disk.

An illustration of the basic idea

What if the plane has a crack in it?

Figure: We remove a half-line from the plane and map the result to the disk. Do these two curves wander off to the same destination or different destinations?

How we want to / should think of the slit disk

Figure: The disk with a slit removed is "really" the disk with a sector removed.

Brownian motion

Figure: Brownian motion in *d*-dimensions is the continuous-time, continuous-space analogue of simple random walk

Brownian motion sees the slit

Figure: Brownian motion conditioned to visit a point close to and above the marked point (prior to exiting the slit disk) behaves differently – even at the beginning – to Brownian motion conditioned to visit a point close to and below the marked point (prior to exiting the slit disk).

What is the general philosophy?

- We have some infinite space of objects E.
- We want a way of saying what it means for a sequence of objects (x_n) that wanders off to infinity to "converge".
- We will then have a way of deciding when two large objects are similar / different.

What is the general philosophy?

- We have some infinite space of objects E.
- We want a way of saying what it means for a sequence of objects (x_n) that wanders off to infinity to "converge".
- We will then have a way of deciding when two large objects are similar / different.

What is the general philosophy?

- We have some infinite space of objects E.
- We want a way of saying what it means for a sequence of objects (x_n) that wanders off to infinity to "converge".
- We will then have a way of deciding when two large objects are similar / different.

Implementing the general philosophy

- We take a Markov chain $(X_k)_{k=0}^{\infty}$ with state-space E that wanders off to infinity, define $(X_k^n)_{k=0}^{\infty}$ to be $(X_k)_{k=0}^{\infty}$ conditioned to visit x_n , and say that (x_n) converges if the joint probability distribution of $(X_0^n, \ldots, X_\ell^n)$ converges for every ℓ .
- For two sequences, the same / different ensemble of limiting distributions correspond to the same / different limit points.

Implementing the general philosophy

- We take a Markov chain $(X_k)_{k=0}^{\infty}$ with state-space E that wanders off to infinity, define $(X_k^n)_{k=0}^{\infty}$ to be $(X_k)_{k=0}^{\infty}$ conditioned to visit x_n , and say that (x_n) converges if the joint probability distribution of $(X_0^n, \ldots, X_\ell^n)$ converges for every ℓ .
- For two sequences, the same / different ensemble of limiting distributions correspond to the same / different limit points.

Infinite bridges

- If the joint probability distribution of (X_0^n,\ldots,X_ℓ^n) converges for every ℓ , there is an infinite bridge $(X_k^\infty)_{k=0}^\infty$ such that the joint probability distribution of (X_0^n,\ldots,X_ℓ^n) converges for every ℓ to the joint probability distribution of $(X_0^\infty,\ldots,X_\ell^\infty)$ for every ℓ .
- An infinite bridges has the same backward transition probabilities as the original chain:

$$\mathbb{P}\{X_n^{\infty} = i \,|\, X_{n+1}^{\infty} = j\} = \mathbb{P}\{X_n = i \,|\, X_{n+1} = j\}$$

■ Determining the possible limit points in our sense \iff determining the set of infinite bridge distributions \iff determining the Markov chains that have the same backward transition probabilities as the original chain $(X_k)_{k=0}^{\infty}$.

Infinite bridges

- If the joint probability distribution of (X_0^n,\ldots,X_ℓ^n) converges for every ℓ , there is an infinite bridge $(X_k^\infty)_{k=0}^\infty$ such that the joint probability distribution of (X_0^n,\ldots,X_ℓ^n) converges for every ℓ to the joint probability distribution of $(X_0^\infty,\ldots,X_\ell^\infty)$ for every ℓ .
- An infinite bridges has the same backward transition probabilities as the original chain:

$$\mathbb{P}\{X_n^{\infty} = i \,|\, X_{n+1}^{\infty} = j\} = \mathbb{P}\{X_n = i \,|\, X_{n+1} = j\}.$$

■ Determining the possible limit points in our sense \iff determining the set of infinite bridge distributions \iff determining the Markov chains that have the same backward transition probabilities as the original chain $(X_k)_{k=0}^{\infty}$.

Infinite bridges

- If the joint probability distribution of (X_0^n,\ldots,X_ℓ^n) converges for every ℓ , there is an infinite bridge $(X_k^\infty)_{k=0}^\infty$ such that the joint probability distribution of (X_0^n,\ldots,X_ℓ^n) converges for every ℓ to the joint probability distribution of $(X_0^\infty,\ldots,X_\ell^\infty)$ for every ℓ .
- An infinite bridges has the same backward transition probabilities as the original chain:

$$\mathbb{P}\{X_n^{\infty} = i \, | \, X_{n+1}^{\infty} = j\} = \mathbb{P}\{X_n = i \, | \, X_{n+1} = j\}.$$

■ Determining the possible limit points in our sense \iff determining the set of infinite bridge distributions \iff determining the Markov chains that have the same backward transition probabilities as the original chain $(X_k)_{k=0}^{\infty}$.

Trees at last, trees at last, thank God almighty ...

- For concreteness sake, let's consider trees that are rooted, binary (each vertex has 0 or 2 children), and ordered (we distinguish between a left child and a right child).
- We can identify such a tree as a subtree of the complete rooted binary tree.

Trees at last, trees at last, thank God almighty ...

- For concreteness sake, let's consider trees that are rooted, binary (each vertex has 0 or 2 children), and ordered (we distinguish between a left child and a right child).
- We can identify such a tree as a subtree of the complete rooted binary tree.

How many binary trees are there?

The number of binary trees with 2n+1 vertices (and hence n+1 leaves) is the $n^{\rm th}$ Catalan number $\frac{1}{n+1}\binom{2n}{n}$.

Figure: Catalan numbers are probably the most ubiquitous sequence of numbers in mathematics. This book gives for the first time a comprehensive collection of their properties and applications to combinatorics, algebra, analysis, number theory, probability theory, geometry, topology, and other areas. [...] the book presents 214 different kinds of objects counted by them [...]

Rémy's algorithm

Rémy's (1985) algorithm iteratively generates a sequence of random binary trees $(U_n)_{n=1}^{\infty}$ such that U_n is uniformly distributed on the set of binary trees with 2n+1 vertices.

Example of one iteration of Rémy's algorithm

Figure: First step in an iteration of Rémy's algorithm: pick a vertex \boldsymbol{v} uniformly at random.

Example of one iteration of Rémy's algorithm - continued

Figure: Second step in an iteration of Rémy's algorithm: cut off the subtree rooted at v and attach a copy of the binary tree with 3 vertices to the end of the edge that previously led to v.

Example of one iteration of Rémy's algorithm - continued

Figure: Third step in an iteration of Rémy's algorithm: re-attach the subtree rooted at v to one of the two leaves of the copy of the 3-vertex tree, and re-label the vertices appropriately. The solid circle is the new location of v and the open circles are the clones of v.

Example of a backward transition for Rémy's algorithm

Figure: First step in a backward transition of Rémy's algorithm: pick a leaf w uniformly at random.

Example of a backward transition – continued

Figure: Second step in a backward transition of Rémy's algorithm: delete the chosen leaf w and its sibling.

Example of a backward transition – continued

Figure: Third step in a backward transition of Rémy's algorithm: close up the gap.

Embedding one binary tree into another

An embedding of a binary tree s into a binary tree t is a map from the vertex set of s into the vertex set of t such that the following hold.

- The image of a leaf of s is a leaf of t.
- If u, v are vertices of s such that v is below and to the left (resp. right) of u, then the image of v in t is below and to the left (resp. right) of the image of u in t.

Examples of embeddings

Figure: All the embeddings of the unique binary tree ${\bf s}$ with 3 vertices into a particular tree ${\bf t}$ with 7 vertices.

How does our philosophy play out for the Rémy chain?

■ Suppose that $(\mathbf{t}_k)_{k=1}^\infty$ is a sequence of binary trees, where \mathbf{t}_k has n_k+1 leaves and $n_k\to\infty$ as $k\to\infty$. Then $(\mathbf{t}_k)_{k=1}^\infty$ converges in the sense we have been discussing if and only if for each binary tree s the following limit exists

$$\pi(\mathbf{s}; (\mathbf{t}_k)_{k=1}^{\infty}) := \lim_{k \to \infty} \frac{\# \text{ of embeddings of } \mathbf{s} \text{ into } \mathbf{t}_k}{\binom{n_k+1}{m+1}}$$

where s has m+1 leaves.

Two sequences $(\mathbf{t}_k')_{k=1}^{\infty}$ and $(\mathbf{t}_k'')_{k=1}^{\infty}$ converge to the same limit if and only if for all binary trees s

$$\pi(\mathbf{s}; (\mathbf{t}'_k)_{k=1}^{\infty}) = \pi(\mathbf{s}; (\mathbf{t}''_k)_{k=1}^{\infty}).$$

How does our philosophy play out for the Rémy chain?

■ Suppose that $(\mathbf{t}_k)_{k=1}^{\infty}$ is a sequence of binary trees, where \mathbf{t}_k has n_k+1 leaves and $n_k\to\infty$ as $k\to\infty$. Then $(\mathbf{t}_k)_{k=1}^{\infty}$ converges in the sense we have been discussing if and only if for each binary tree \mathbf{s} the following limit exists

$$\pi(\mathbf{s}; (\mathbf{t}_k)_{k=1}^{\infty}) := \lim_{k \to \infty} \frac{\# \text{ of embeddings of } \mathbf{s} \text{ into } \mathbf{t}_k}{\binom{n_k+1}{m+1}},$$

where s has m+1 leaves.

■ Two sequences $(\mathbf{t}_k')_{k=1}^{\infty}$ and $(\mathbf{t}_k'')_{k=1}^{\infty}$ converge to the same limit if and only if for all binary trees \mathbf{s}

$$\pi(\mathbf{s}; (\mathbf{t}_k')_{k=1}^{\infty}) = \pi(\mathbf{s}; (\mathbf{t}_k'')_{k=1}^{\infty}).$$

The sampling perspective

■ Equivalently, $(\mathbf{t}_k)_{k=1}^{\infty}$ converges if and only if for every m the random subtree spanned by m+1 leaves of \mathbf{t}_k chosen uniformly at random without replacement converges in distribution as $k \to \infty$.

Graph limits and metric measure spaces connection / analogy

- The notion of convergence witnessed by convergence in distribution of randomly sampled sub-objects is also a key idea in the area of graph limits: Borgs, Chayes, Diaconis, Janson, Lovász, Sós, Szegedy, Tao, Vesztergombi, ...
- There is a concrete characterization of the possible limit objects in terms of ℝ-trees with extra structure. This is analogous to the appearance of graphons in the theory of graph limits.
- Convergence in Gromov and Vershik's theory of metric measure spaces is also witnessed by convergence in distribution of randomly sampled sub-objects.

Graph limits and metric measure spaces connection / analogy

- The notion of convergence witnessed by convergence in distribution of randomly sampled sub-objects is also a key idea in the area of graph limits: Borgs, Chayes, Diaconis, Janson, Lovász, Sós, Szegedy, Tao, Vesztergombi, ...
- There is a concrete characterization of the possible limit objects in terms of R-trees with extra structure. This is analogous to the appearance of graphons in the theory of graph limits.
- Convergence in Gromov and Vershik's theory of metric measure spaces is also witnessed by convergence in distribution of randomly sampled sub-objects.

Graph limits and metric measure spaces connection / analogy

- The notion of convergence witnessed by convergence in distribution of randomly sampled sub-objects is also a key idea in the area of graph limits: Borgs, Chayes, Diaconis, Janson, Lovász, Sós, Szegedy, Tao, Vesztergombi, ...
- There is a concrete characterization of the possible limit objects in terms of R-trees with extra structure. This is analogous to the appearance of graphons in the theory of graph limits.
- Convergence in Gromov and Vershik's theory of metric measure spaces is also witnessed by convergence in distribution of randomly sampled sub-objects.

Convergence notions induced by other Markov chains

Similar results, but with different notions of convergence arise if the Rémy chain is replaced by other tree-valued Markov chains such as:

- random binary search trees,
- random digital search trees,
- random radix sort trees,
- preferential attachment trees (a.k.a. nested Chinese restaurant processes),
- trees associated with shuffle products and Hopf algebras,...

Future

Turning these perspectives into statistical procedures that can be used with data is uncharted territory. For example, for each binary tree s we have the statistic

 $t \mapsto \#$ of embeddings of s into t.

- How do we choose between / combine these for a particular purpose?
- Can we use them to build tractable exponential families?
- Is there a version of this using Markov chains more adapted to phylogenies?