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Figure: Big trees abound in biology (and many other disciplines). What
does it mean to say that two big trees are ? Is there a
PRINICIPLED way to make this distinction?

Steven N. Evans



All who wander are not lost

m A sequence of points on the real line wanders off to infinity if
it eventually leaves any bounded set, never to return.
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All who wander are not lost

m A sequence of points on the real line wanders off to infinity if
it eventually leaves any bounded set, never to return.

m Can we delineate different ways in which such sequences
wander off to infinity?

m Yes! The sequence may converge to +o0, converge to —o0, or
neither.
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Packing the real line into an interval
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Figure: We can map the whole real line bijectively to an (open) interval.
Converging to +o0 corresponds to converging (in the usual sense) to one
of the end-points of the interval.
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Packing the plane into a disk

m We can map the plane bijectively to an (open) disk

m A sequence wandering off to infinity converges if it has an
asymptotic direction.

m Convergence corresponds to converging (in the usual sense) to
one of the boundary points of the disk.
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An illustration of the basic idea
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What if the plane has a crack in it?

Figure: We remove a half-line from the plane and map the result to the
disk. Do these two curves wander off to the same destination or different
destinations?
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How we want to / should think of the slit disk
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Figure: The disk with a slit removed is “really” the disk with a sector
removed.
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Brownian motion

Figure: Brownian motion in d-dimensions is the continuous-time,

continuous-space analogue of simple random walk
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Brownian motion sees the slit

Figure: Brownian motion conditioned to visit a point close to and above
the marked point (prior to exiting the slit disk) behaves differently — even
at the beginning — to Brownian motion conditioned to visit a point close
to and below the marked point (prior to exiting the slit disk).
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What is the general philosophy?

m We have some infinite space of objects F.
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What is the general philosophy?

m We have some infinite space of objects F.

m We want a way of saying what it means for a sequence of
objects (x,) that wanders off to infinity to “converge”.

m We will then have a way of deciding when two large objects
are similar / different.
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Implementing the general philosophy

m We take a Markov chain (X})7” , with state-space E that
wanders off to infinity, define (X}*){, to be (X)L,
conditioned to visit x,, and say that (x,) converges if the joint
probability distribution of (X, ..., X}") converges for every .

Steven N. Evans



Implementing the general philosophy

m We take a Markov chain (X})7” , with state-space E that
wanders off to infinity, define (X}*){, to be (X)L,
conditioned to visit x,, and say that (x,) converges if the joint
probability distribution of (X, ..., X}") converges for every .

m For two sequences, the same / different ensemble of limiting
distributions correspond to the same / different limit points.
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Infinite bridges

m If the joint probability distribution of (X§, ..., X}') converges
for every ¢, there is an infinite bridge (X°)77_, such that the
joint probability distribution of (X{',..., X}") converges for
every £ to the joint probability distribution of (X, ..., X;°)
for every /.
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Infinite bridges

m If the joint probability distribution of (Xg,..., X})
for every ¢, there is an infinite bridge (X°)77_, such that the

joint probability distribution of (X¢',..., X}") for
every £ to the joint probability distribution of (X, ..., X°)
for every /.

m An infinite bridges has the same backward transition
probabilities as the original chain:

PAXY =i X5 = j} = P{Xy, =i Xpp = j}.

m Determining the possible limit points in our sense «<—
determining the set of infinite bridge distributions <
determining the Markov chains that have the same backward
transition probabilities as the original chain (Xj);2,.
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Trees at last, trees at last, thank God almighty ...

m For concreteness sake, let's consider trees that are rooted,
binary (each vertex has 0 or 2 children), and ordered (we
distinguish between a left child and a right child).
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Trees at last, trees at last, thank God almighty ...

m For concreteness sake, let's consider trees that are rooted,
binary (each vertex has 0 or 2 children), and ordered (we
distinguish between a left child and a right child).

m We can identify such a tree as a subtree of the complete
rooted binary tree.
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How many binary trees are there?

The number of binary trees with 2n + 1 vertices (and hence n + 1
leaves) is the n't Catalan number %H(ZS)

Catalan

Figure: Catalan numbers are probably the most ubiquitous sequence of
numbers in mathematics. This book gives for the first time a
comprehensive collection of their properties and applications to
combinatorics, algebra, analysis, number theory, probability theory,
geometry, topology, and other areas. [...] the book presents 214 different
kinds of objects counted by them [...]
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Rémy’s algorithm

Rémy’s (1985) algorithm iteratively generates a sequence of
random binary trees (U,,);"_; such that U, is uniformly distributed
on the set of binary trees with 2n + 1 vertices.
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Example of one iteration of Rémy’s algorithm

000 001 100 101

Figure: First step in an iteration of Rémy’s algorithm: pick a vertex v
uniformly at random.
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Example of one iteration of Rémy’s algorithm — continued

000 001

Figure: Second step in an iteration of Rémy’s algorithm: cut off the
subtree rooted at v and attach a copy of the binary tree with 3 vertices
to the end of the edge that previously led to v.
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Example of one iteration of Rémy’s algorithm — continued

1000 1001

Figure: Third step in an iteration of Rémy’s algorithm: re-attach the
subtree rooted at v to one of the two leaves of the copy of the 3-vertex
tree, and re-label the vertices appropriately. The solid circle is the new
location of v and the open circles are the clones of .

Steven N. Evans



Example of a backward transition for Rémy’s algorithm

1000 1001

Figure: First step in a backward transition of Rémy’s algorithm: pick a
leaf w uniformly at random.
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Example of a backward transition — continued

Figure: Second step in a backward transition of Rémy’s algorithm: delete
the chosen leaf w and its sibling.
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Example of a backward transition — continued

000 001 100 101

Figure: Third step in a backward transition of Rémy’s algorithm: close up
the gap.
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Embedding one binary tree into another

An embedding of a binary tree s into a binary tree t is a map from
the vertex set of s into the vertex set of t such that the following

hold.
m The image of a leaf of s is a leaf of t.

m If u, v are vertices of s such that v is below and to the left
(resp. right) of u, then the image of v in t is below and to the
left (resp. right) of the image of w in t.
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Examples of embeddings
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Figure: All the embeddings of the unique binary tree s with 3 vertices
into a particular tree t with 7 vertices.
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How does our philosophy play out for the Rémy chain?

m Suppose that (t;)7~, is a sequence of binary trees, where t;,
has ny + 1 leaves and n;, — 00 as k — 0. Then (t;);"
converges in the sense we have been discussing
for each binary tree s the following limit exists

(s (b)) = lim # of embeddings of s into t;

koo (wih) ’

where s has m + 1 leaves.
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How does our philosophy play out for the Rémy chain?

m Suppose that (t;)7~, is a sequence of binary trees, where t;,
has ny + 1 leaves and n;, — 00 as k — 0. Then (t;);"
converges in the sense we have been discussing

for each binary tree s the following limit exists

f . fsi
(s; (t)plq) = h # 0 embEddmgf of s into tkj
ko ey

where s has m + 1 leaves.

m Two sequences (t}.)72, and (t])7, converge to the same
limit for all binary trees s

m(s; (bp)x1) = m(s; (61)50)-
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The sampling perspective

m Equivalently, (tz);2, converges if and only if for every m the
random subtree spanned by m + 1 leaves of t; chosen
uniformly at random without replacement converges in
distribution as k — 0.
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Graph limits and metric measure spaces connection /

analogy

m The notion of convergence witnessed by convergence in
distribution of randomly sampled sub-objects is also a key idea
in the area of graph limits: Borgs, Chayes, Diaconis, Janson,
Lovasz, Sés, Szegedy, Tao, Vesztergombi, ...
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Graph limits and metric measure spaces connection /

analogy

m The notion of convergence witnessed by convergence in
distribution of randomly sampled sub-objects is also a key idea
in the area of graph limits: Borgs, Chayes, Diaconis, Janson,
Lovasz, Sés, Szegedy, Tao, Vesztergombi, ...

m There is a concrete characterization of the possible limit
objects in terms of [R-trees with extra structure. This is
analogous to the appearance of graphons in the theory of
graph limits.

m Convergence in Gromov and Vershik's theory of metric
measure spaces is also witnessed by convergence in distribution
of randomly sampled sub-objects.

Steven N. Evans



Convergence notions induced by other Markov chains

Similar results, but with different notions of convergence arise if the
Rémy chain is replaced by other tree—valued Markov chains such as:

m random binary search trees,
m random digital search trees,
m random radix sort trees,
n

preferential attachment trees (a.k.a. nested Chinese restaurant
processes),

trees associated with shuffle products and Hopf algebras,...
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Future

Turning these perspectives into that can be
used with data is uncharted territory. For example, for each binary
tree s we have the statistic

t — # of embeddings of s into t.

m How do we choose between / combine these for a particular
purpose?
m Can we use them to build 7

m s there a version of this using Markov chains more adapted to
?
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