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Phylogenetics: ‘some’ pioneers: 1970s-1980’s.




(1925-1983)

: thof bioinformatics.

“She anticipated the BESSEESRREROMPUters to the current
theories of Zuckert & Pauling and the method which

Sanger had enginéered.,\
the first reconstrugtion

model of pratein evol ’= -,.‘ AM model, in 1966.

She initiated the collect® »“-3 btein sequences in the Atlas
of Protein Sequence and re, a book collecting all
known protein sequences tiiWgshe published in 1965."

All from Wikipedia




Statistical Inference: 1980s-90s

» Efron’s bootstrap, 1979.




Felsenstein suggests the Bootstrap for Phylogenies in 1985

Bootstrap support for Phylogenies.

Taking as observations the columns of the matrix X of aligned sequences,
the rows representing the species.

The sampling distribution of the estimated tree is estimated by
resampling with replacement among the characters or columns of the
data.

This provides a large set of plausible alternative data sets, each be used in
the same way as the original data to give a separate tree. (see ? for a
review).



Simple confidence values

» Univariate.

> Multiple Testing.

» Composite Statements.
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Sampling Distribution for Trees




Data




True Sampling Distributionw



Bootstrap Sampling Distribution
(now parametric)



Statistical Inference: 1990s

» Bayesian methods using MCMC.
Ziheng Yang, Bret Larget, Michael Newton, Hani Doss, Bruce
Rannala, John Hulsenbeck. ,




Early 1990’s

Stanford

= Michael Newton came and gave a talk on
Large dewatlons for the bootstrap for trees.



Efron, Halloran, H., (1996)

Bootstrap confidence Ievels for trees
Depend on local and global properties of a neighborhood.

From Efron, Halloran, H., (1996)

What is the curvature of the boundary?
How many neighbors does a region have!?



Confidence Statements for trees
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Bootstrap for Multidimensional Scaling and PCA (H.,1985)

Schoenberg’s (1935) remarked that a symmetric matrix of positive
entries with zeros on the diagonal is a Euclidean distance matrix between
n points if and only if the matrix

1
—ZHAZH is semi-definite positive

where H=(I—111");and I’ = (1,1,1...,1)



Approximating Non Euclidean Distances by Euclidean ones
Suppose we did have an Euclidean
space, variables measured in RP that are not centered: Y, apply the
centering matrix

X = HY, withH:(I—%ll’),and 1'=(1,1,1...,1)

Call B = XX/, if D@ is the matrix of squared distances between rows of
X in the euclidean coordinates,

i_

1
dij = \/(XE =X+ -+ (f —x)2.and — SHD¥H =B

We can go backwards from a matrix D to X by
taking the eigendecomposition of B in much the same way that PCA
provides the best rank r approximation for data by taking the singular
value decomposition of X, or the eigendecomposition of XX'.



s 0 0 O
0 s, 0 0
XO = usv/ withs™ =10 o
0 0 Sy e
0 0

This provides the best approximate representation in an Euclidean space
of dimension r. The algorithm provides points in a Euclidean space that
have approximately the same distances as those provided by D?.



MDS Algorithm

In summary, given an n X n matrix of interpoint distances, one can solve
for points achieving these distances by:

|. Double centering the interpoint distance squared matrix:
S = —JHD;H.

2. Diagonalizing S: S = UAU'.
3. Extracting X: X = UA!/2,



IMA Workshop: 1996

PHYLOGENIES : AN OVERVIEW
SUSAN P. HOLMES"

Abstract. This is an overview that aims to help statisticians access interesting
problems developing in the biologicial literature on estimating and evaluating phyloge-
netic trees.

Key words. Phylogeny, DNA, tree, parsimony, bootstrap, cladistics, molecular
evolution, systematics.

The phylogenetic tree is a statistical parameter, estimated in different
ways from DNA/AA data:

» Parametric: ML estimation, PAML, Phyml, FastML,RaxML,...
> Distance based methods: Neighbor Joining, UPGMA,..

> Parsimony: Steiner tree problem: nonparametric.

v

Bayesian estimation, Mr Bayes by MCMC, from posterior sampling
distribution.



MIT Combinatorialist

Felsenstein, 1978 had published the

number of phylogenetic trees

2n—-3)1=2n—-3) x (2n—5) x...5x 3

This formula for the number of trees was first proved using generating
functions by Schroder (1873)2.



Coding Trees as Perfect Matchings

A perfect matching on 2n points is a partition of 1,2,...,2n inton
two-element subsets. It is well known that there are (2n)!/2™n! distinct
perfect matchings. When n = 2, the three perfect matchings are

{1,2)3,45{1, 342,45 {1,4}{2, 3}



From Trees to Matchings

5 2134
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5 2134

Put down the sibling pairs:

(1,3)(2,5)(6,7)(8,4)

We briefly describe the correspondence between matchings and trees.
Begin with a tree with { labeled leaves. Label the internal vertices
sequentially with £ + 1,04 2,...,2({ — 1) choosing at each stage the
ancestor which has both children labeled and who has the descendent
lowest possible available label (youngest child). Thus the tree



is labeled

When all nodes are labeled, create a matching on 2n = 2({ — 1) vertices
by grouping siblings. In the example above, this yields

13 4U2 Y1 &'



From matchings to trees

To go backward, given a perfect matching of 2n points, note that at least
one matched pair has both entries from {1,2,3...,n+ 1}. All such
labels are leaves; if there are several leaf-labeled pairs, choose the pair
with the smallest label. Give the next available label (n +2 =€+ 1) to
their parent node. There are then a new set of available labeled pairs.
Choose again the pair with the smallest label to take the next available
label for its parent, and so on.



For example, {3,4H2,5K1, 6} has 2n = 6 and {3, 4} has both entries
from {1, 2, 3,4}. The parent of these is labeled 5 and thus matched with
2 and then the parent of {2, 5} is matched with 1, yielding



Matchings and Decompositions

Diaconis and Holmes (1998) A matching of 2(n-1) objects is a pairing off,
without care for order within pairs or between pairs.
The Same matchings:



Call B,,_1 the subgroup of >, that fixes the pairs

(1,243,4}...(2n —3,2n— 2}

then
Mnf1 - SZn/an1
and
— 2
IMp | = M =(2n-3)!!'=02n—-3)x(2n—5)x---x3x1
2n-T(n —1)!

(Son—2, Bn—1) form a Gelfand pair Diaconis and Shahshahani (1987)

LMy 1) =ViaVo®...HdV,



A multiplicity free representation.

L(Mnf” = SZA

D
AFEn
where the direct sum is over all partitions A of m,

2N = (2A1,2M, ..., 2A) and 8% is associated irreducible
representation of the symmetric group So,.

Just to take the first few: for A =n — 1 S? are the constants, and this
gives the sample size. for A = (n — 2, 1), S* are the number of times
each pair appears. for A = (n — 3,2), S* are the number of times
partition of 4 appears in the tree. for A = (n —3,1,1), S are the
number of times 2 pairs appear simultaneously.



Matchings are useful

Q springer

» For going through all trees systematically. (Gray code for Trees)
» Doing vigorous random walks on tree space.
> Doing Fourier Analysis on Tree Data.

But the matching distance is not satisfactory to the biologists.






The Gelfand pair decomposition is similar to what was done by Diaconis
for permutation data (IMS Book on Probability and Statistics on Groups,
1988).

P(t) = KeMmmo) K is a normalizing constant

» Exponential family, it needs:
» A central tree T,

» A distance between trees d(T,T0)

> It is possible to extend this to make a Bayesian model with a
symmetric apriori distribution for To.



Cornell, 1997: The permuto-associahedron

A book on polytopes.(Ziegler)

Talk with Lou Billera: | P&




Frequentist Confidence Regions

PlteRy) =1—x

We will use the nonparametric approach of Tukey who proposed peeling
convex hulls to construct successive ‘deeper’ confidence regions. But we
need a geometrical space to build these regions in.



What does a neighborhood look like?

Need modern topology.
Aims

v

Fill Tree Space and make meaningful boundaries.

Define distances between trees.

v

v

Define neighborhoods, meaningful measures.

v

Principal directions of variations in tree space, summarizing :
structure + noise.

v

Confidence statements, convex hulls.



Distances between Trees

» Robinson and Foulds, (bipartitions).
> Nearest Neighbor Interchange (NNI).
Rotation Moves

0

1 2 3 4



Distances between Trees

» Robinson and Foulds, (bipartitions).
> Nearest Neighbor Interchange (NNI).
Rotation Moves

0 0

1 2 3 4 123 4



Distances between Trees

» Robinson and Foulds, (bipartitions).
> Nearest Neighbor Interchange (NNI).
Rotation Moves

0 q 0

1 2 3 4 123 4 1 23 4

> Fill-in of NNI moves: Billera, Holmes, Vogtmann (BHYV).
The boundaries between regions represent an area of uncertainty
about the exact branching order. In biological terminology this is
called an ‘unresolved’ tree.



Boundary for trees with 3 leaves




The quadrant for one tree

0.1)

Ly¢°

1 23 4
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Link of the origin
All 15 quadrants for n = 4 share the same origin. If we take the diagonal

line segment x +y = 1 in each quadrant, we obtain a graph with an edge
for each quadrant and a trivalent vertex for each boundary ray; this
graph is called the link of 1"e origin.

B

(1,0




Cube complex of Euclidean Orthants

A path between two trees consists of
line segments through a sequence of orthants. This sequence of orthants

is the path.
A path is a geodesic when it has the smallest length of all paths between

two points.



Cube complex of Euclidean Orthants

A path between two trees consists of
line segments through a sequence of orthants. This sequence of orthants

is the path.
A path is a geodesic when it has the smallest length of all paths between

two points.



A Cone Path

A path between two trees T and T’ always exists. Since all orthants
connect at the origin, any two trees T and T’ can be connected by a
two-segment path, this is called the cone-path.



Three orthants sharing a common boundary for n = 4 leaves.




b b

Theorem( Billera, Holmes, Vogtmann (BHV)): Tree space with BHV
metric is a CAT(0) space, that is, it has non-positive curvature.
This implies there are geodesic between any two trees (Gromov).
It is not an Euclidean space.









This has an effect on the existence of geodesics.
The speed at which MCMC methods work.
The size of the “variance”.

The computation of the mean of a set of trees.
The number of neighbors of a tree.



2001: NZ Phylogenetics




KITP: May 2001: David Hillis

—ve p
‘ "‘

Santa Barbara: | taught him all about Multidimensional Scaling and he put

me in contact with some biologists with difficult multiple tree source
problems.



AIM conference 2002, Palo Alto

Francis Su has extensive notes:

Felsenstein, Billera, Vogtman, H., Wachs, Diaconis, Shaharian, Staple,
Vert, K. St John, Nina Amenta, David Epstein.

.. Further progress on the right way to encode trees through a binary
encoding of edges

Use edge compatibility to go through treespace.



We can embed trees in Euclidean space (approximately) using
MDS

Geodesic metric space:

If we have a distance defined between any two points of a space, we call
it a metric space.

(The distance doesn’t have to be defined through ordinary coordinates)
A geodesic metric space is a metric space where geodesics are defined to
be the shortest path between points in the space.

We can ask whether points are closer to a tree or to being embeddable
in Euclidean space by using Gromov’s .

Implementation:

distory is an R package written with John Chakerian? which both
implements the geodesic BHV distance between trees using Owen and
Provan (2009)’s algorithm and the computation of delta for any finite set
of points.

__J¢]
&)
4



We know that given a distance matrix we can give a treelike
representation of the points with these distances by building a tree if the
distances obey Buneman’s four point condition (Buneman, 1974).

Buneman’s four point condition

For any four points (u, v, w,x) :
The three sums:d(u, v) + d(w, x), d(u,w) + d(v, x), d(u, x) + d(v, w) are
equal, not less than the third.



We can see Gromov’s definition the hyperbolicity constant 0 as a
relaxation of the above four-point condition:

Gromov’s hyperbolicity contant

For any four points u,v,w,x, the two larger of the three sums
d(u,v) + d(w, x), d(uw,w) + d(v,x), d(u, x) + d(v, w) differ by at most 20.



d-hyperbolic space is a geodesic metric space in which every geodesic
triangle is d-thin.

d-thin: pick three points and draw geodesic lines between them to make
a geodesic triangle. Then any point on any of the edges of the triangle is
within a distance of 6 from one of the other two sides.



For example, trees are 0-hyperbolic: a geodesic triangle in a tree is just a
subtree, so any point on a geodesic triangle is actually on two edges.

Normal Euclidean space is co-hyperbolic; i.e. not hyperbolic. Generally,
the higher 6 has to be, the less curved the space is.



s it better to represent the distances by a tree or a Euclidean
projection?

PSYCHOMETRIKA-VOL. 47 No. 1.
MARCH 1982

SPATIAL VERSUS TREE REPRESENTATIONS OF PROXIMITY DATA

SANDRA PRUZANSKY

BELL LABORATORIES

AmOs TVERSKY

STANFORD UNIVERSITY

J. DouGLAas CARROLL

BELL LABORATORIES

In this paper we investigated two of the most common representations of proximities, two-
dimensional euclidean planes and additive trees, Our purpose was to develop guidelines for com-
paring these representations, and 1o discover propertics that could help diagnose which
representation is more appropriate for a given sel of data. In a simulation study, artificial data
generated cither by a plane of by a tree were scaled using procedures for fitting either a plane
(KYST) or a tree (ADDTREE). As expected, the appropriate model fit the data better than the
inappropriate model for all noise levels. Furthermore, the two models were roughly comparable:
for all noise levels, KYST accounted for plane data about as well as ADDTREE accounted for tree
data. Two propertics of the data proved useful in distinguishing between the models: the skewness
of the distribution of distances, and the proportion of elongaled triangles, which measures depar-
tures from the ultrametric inequality, Applications of KYST and ADDTREE to some twenty sets of
real data, collected by other investigators, showed that most of these data could be classified clearly
as favoring either a tree or a two-dimensional i

Key i i ling, clustering, additive trees.




Malaria Data as seen using ape

Pgall
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Bootstrap of Malaria Data



Eigenvalues of MDS for bootstrapped trees

6 0 0 00 0 00 o000 o0 0 o0

o

T T T T T T T
0 20000 40000 60000 80000 120000




40

20

-40 =20

-60

Bootstrapped trees

18




[Maximum Likelihood Bootstrap|



Tree of Trees

A tree is a complete CAT(0) space.

Since BHV,2001 ? have shown that the space of trees is negatively curved
(a CAT(0) space), the most natural representation of a collection of
trees may be a tree.

Is this good for anything?



Statistical Uses for Distances

» Center of Cloud of Trees (equal weights): Find T, that minimizes
either ZE:] d?(Ty, T) this is the (L2) definition of the mean
tree, or thl d(To, Te) (L.

> Extend the above to cater for a measure on treespace.

P(T) = Kexp(—=Ad(T, To))
> Variability of the tree-points:
Pseudovariance=ﬁ ZE:] d?(Ty, Ty) = 2.
> Studentizing :
d(T*) Tobs)
s

> Leverage of a position, as in leverage of an observation in regression.
» PCA with regards to Instrumental Variables- DPCOA. Explain a set

of distances between trees by other distances between the same
data.



Thinking like a Statistician....

and a geometer..

| 2

How treelike are the data ? Model Selection and residual inspection:
networks.

Do we always need the tree, Distances between Data.
Are all the characters supporting the tree? Leverage.
Finding hidden gradients Ordination of trees.
Stability under perturbation Evaluating the estimates.
How variable are the trees? Variance and Moments.



Consequences

> Averaging works better than it should, (an argument against total
evidence computation without decomposing??).

> We can build Bayesian priors based on distances.

> We can make a useful bootstrap statement.

> We can make convex hulls. — Confidence regions.
» We know how many neighbors any tree has.

> We can make a useful bootstrap statement.



But distances are not everything..

Amos Tversky and Danny Kahnneman

..remember the baseline

THINKING,
FAST.. STOW
R
DANIEL
KAHNEMAN



THE

UNDOING
PROJECT

4 Our Minds

Heuristics and Biases, more particularly the representativeness heuristic.
Heuristics are described as ”judgmental shortcuts that generally get us
where we need to go - and quickly - but at the cost of occasionally
sending us off course.”

Heuristics are useful because they use effort-reduction and simplification
in decision-making.

For representativenes of an event, similarity or a small distance is not
enough, the baseline frequencies (ie probability) are essential to conclude.
We need careful realistic probability models for treespace, no real data
has ever been uniform, no multivariate data is ever multivariate normal.



Beware the different number of neighbors matters if you think you are
using a Monte Carlo method to estimate the distance to the boundary
using the bootstrap.



Inferential Bootstrap: questions remain

X original data — T estimate.

L

How?

Call X* bootstrap samples consistent with the model used for estimating
the tree:

> Non parametric multinomial resampling for a parsimony tree.

> Seqgen parametric type resampling with the same parameters for a
ML.

> Bayesian GAMMA prior on rates and generation (Yang 2000) for
random sequences according to 7



> Are the characters (columns) independent?
We actually have less information than we think?
What is the unit of information?

> Block Bootstrap to generate dependent data.
> Does the bootstrap work
Conjecture:
The bootstrap estimate of the sampling distribution of the distances

d(t*, 1) is a good approximation to the true sampling distribution
of d(T,T).



From Chakerian and H. (201 I), using the algorithm by Owen and Provan
(2010), implemented in C and wrapped into the distory package:
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Eigenvalues of MDS for bootstrapped trees
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Who Cares!?

Bacterial Species in the Gut: Example of a Metagenome.

Samples from IBS and healthy rats give abundance of about 1,000 species
of bacteria.

To be continued...



Benefitting from the tools and schools of Statisticians

Thanks to the R community, in particular Robert Gentleman, Chessel,
Thioulouse, Dray (ade4 group in Lyon) and Emmanuel Paradis ape.
Collaborators: Louis Billera, Karen Vogtmann, Aaron Staple, Daniel Ford,
John Chakerian, Persi Diaconis, Kris Sankaran, Elizabeth Purdom, Julia
Fukuyama.

My website:

http://webstat.stanford.edu/ susan/

@SherlockpHolmes

or Google : susan holmes stanford
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Comparing Different Trees

v

v

v

v

~Macaca mul

~Macaca fus

Macaca fas

-Macaca syl

Hylobates

~Homosapien
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Gorilla
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Saimiri sc
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Binomial Support Estimates (Consensus+support values).

Split Differences, Visualization Programs .
Distances.

Recoding of Trees as binary columns.



How many neighbors for a given tree?(W.H.Li,1993)

We know the number of neighbors of each tree.

- -




For a tree with only two inner edges, there is the only one way of having
two edges small: to be close to the origin-star tree:

I5 neighbors. This same notion of neighborhood containing |5 different
branching orders applies to all trees on as many leaves as necessary but
who have two contiguous “small edges” and all the other inner edges
significantly bigger than 0.



This picture of treespace frees us from having to use simulations to find
out how many different trees are in a neighborhood of a given radius r

around a given tree. All we have to do is check the sets of continguous
edges in the tree smaller than 1, say there is only one set of size k, then
the neighborhood will contain

(2k — 3! = (2k — 3) x (2k —5) x - - - 3‘different’ trees.

If there are m sets of sizes (n1,12,..., )
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In this case the number of trees within  will be 15 « 105 * 3 = 4725, in
general:

2ng —3)!! x 2ny —3)!! x (2nzg —3)!!--- x 2y, — 3)!!

A tree near the star tree at the origin will have an exponential number of
neighbors.

This explosion of the volume of a neighborhood at the origin provides
for interesting math problems.



These differing number of neighbors for different trees show that the
bootstrap values cannot be compared from one tree to another.
This was implicitly understood by Hendy and Penny in their NN
Bootstrap procedure.

Are there other ways of using the bootstrap than just counting clade
appearances!?



Do we care about confidence statements for phylogenetic

trees!
Cetacees: recognising what is being sold as Whale meat in Japan?

Palumbi. Stanford Scott RBaker Auckland
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The River without a Paddle?
Human immunodeficiency virus: Phylogeny and the origin of HIV-I
The origin of human immunodeficiency virus type | (HIV-1) is
controversial.

ARD HOOPER



Conversely, phylogenetic analysis of HIV-1 sequences indicates that group
M originated before the vaccination campaign, supporting a model of
‘natural transfer’ from chimpanzees to humans. If this timescale is
correct, then the OPV theory remains a viable hypothesis of HIV-I
origins only if the subtypes of group M differentiated in chimpanzees
before their transmission to humans.



Korber and colleagues extrapolated the timing of the origin of HIV-1
group M back to a single viral ancestor in 1931, give or take about 12
years for 95% confidence limits.

Because this calendar of events obviously pre-dated the OPV trials, in the
revised version of his book, Hooper suggested that group M first began
to diverge in chimpanzees, and that there were then several independent
transfers of virus to humans via OPV.

In that case, several OPV batches should bear evidence of their
production in chimpanzee tissue, yet no such evidence has been found.
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Polio vaccines exonerated
Nature 410, 1035 - 1036 (2001)

WA

The OPV batch that Hooper considered to be under most suspicion,
however, was CHAT [10A-11.

An original vial of the batch was found at Britain’s National Institute for
Biological Standards and Control, and the new tests show that it was
prepared from rhesus-macaque cells.

o A AR APFIEE i ﬁ




