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Overarching Goal

* many examples of tree-shaped data
(phylogenies, anatomical trees, etc.)

°* parameters:
* tree shape = tree topology

¢ edge Iengths P. Lo et al. EXACT'09

* not Euclidean datal

Goal: develop methods for statistical analysis
(i.e. mean, PCA) in a space of metric trees
analogous to those for Euclidean space




Tree Space Framework

* constructed by Billera, Holmes, and

Vogtmann (2001)

* tree space T, = set of all trees with n leaves

and branch lengths

* includes degenerate trees (non-binary)




Tree Space
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* coordinates = splits




Tree Space

* not all sets of splits form a tree

= not all vectors are possible

= not a Euclidean space
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Tree Space Properties

Theorem (Billera, Holmes,Vogtmann, 2001):
Tree space has global non-positive curvature.

= unique geodesics (shortest paths)

= well-defined mid-point tree

* BHV or geodesic distance = length of
shortest path between two trees T1 and T>

* polynomial time algorithm to compute
geodesic distance (O. and Provan, 2011)




Mean and Variance

* weighted set X in tree space:
1L
* Fréchet mean(X) = centre of mass

= argmin > p(x)d(x, )2

xEX
(tree minimizing sum of square BHYV distances)

* variance(X) = Z p(x)d(x, 11)°

xeX
» computable by algorithm based on Law of Large

Numbers (Sturm 2003; Miller, O, Provan 2015;
Baddk 2014)
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Experimental Results

Simulated DNA | RAxML
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1 rep. for 4000 base pairs
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Visualization vis MDS
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Visualization vis MDS
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Bootstrap Samples Posterior Samples

" = from reference tree ' - = from reference tree
= from ML tree W= from MAP tree
l= from consensus tree = from consensus tree
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Bootstrap Samples Posterior Samples

. = from mean tree ' . = from reference tree
I = from ML tree = from MAP tree
W = from consensus tree = from consensus tree
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* # of different topologies in sample

* # of different splits in sample

* sum of squared distances between trees
> AT, T

T, T'€T
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Sum of squared distances
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Sum of squared distances
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* Mean is sticky
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Other Statistics

* Central Limit Theorem on BHV tree space:

* special cases: Hotz, O., et al. 2012; Barden, Le, O.,
2013, 2014; Huckemann et al. 2015

* Principal Components Analysis (PCA): (Nye 2011,
2014; Feragen, O. et al. 2013; Nye et al. 2016)

* confidence regions: Willis 2016

* multiple techniques: Chakerian and Holmes 2012,
Zairis et al. 2016

* and more...




Thank You

*funding: SIMONS FOUNDATION

* webpage: http://comet.lehman.cuny.edu/owen




Computing Mean

Theorem (Sturm, 2003): the following algorithm
converges to the mean tree:

* m =T
e ith iteration :

* randomly choose tree T from tree set with replacement

*m;= 1 (geodesic from mi; to Tj)
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