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Hematopoiesis HMM driven by a branching process
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I Latent process: each barcode lineage evolves as a multi-type
branching process X(t) whose components are counts of each
cell type.

I Observation process: multivariate hypergeometric distribution
Ỹ ∼ mvhypgeo(X) — driven by experimental design.

I Read data: read counts Y are proportional to Ỹ with unknown
amplification constant.

I Likelihood is intractable due to massive size of the state space of
the branching process.
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Figure 2: Models and data.
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(a–e) The full mRNA self-regulation model is shown in a. mRNA (m) produces protein P1, which can be transformed into protein P2. P1 is required to produce
mRNA, whereas P2 degrades mRNA into the empty set (–). P1 and P2 can also be degraded. The reactions that occur according to this model are shown in b.
Fitting of the model to the data (c), which comprise mRNA measurements over time. The second model (d) is based on the first model, but it does not contain
protein P2. The relevant reactions are shown in e. 3



Case study: cholera in Bangladesh
Goal: To understand the dynamics of endemic cholera in Bangladesh
and to develop a model that will be able to predict outbreaks several
weeks in advance.

I Specifically, to understand how the disease dynamics are related
to environmental covariates.
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Mathbaria cholera incidence data and covariates
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I Covariates are the smoothed standardized daily values
CWT (i) = (WT (i)−WT )/sWT , CWD(i) = (WD(i)−WD)/sWD.

I We could use a phenomenological model (e.g., Poisson
regression), but this would not tell us anything about the number
of infected people, and disease transmission parameters.
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Deterministic SIR-like models

Easy system of nonlinear differential equations. Models mean
behavior of a stochastic system.

Problem: Poorly mimics stochastic dynamics when one of the
compartments is low. Not clear how to model noisy data.
Solution: Use a real stochastic model (e.g., continuous-time Markov
chain or SDE).
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SIRS model

S, I, RS+1, I, R-1 S, I-1, R+1

S-1, I+1, R

I S, I, and R denote the numbers of susceptible, infectious, and
recovered individuals at time t ; N = S + I + R

I β represents the infectious contact rate,
α(t) = αAi = exp [α0 + α1CWD(i − κ) + α2CWT (i − κ)] represents
the time-varying environmental force of infection, γ is the
recovery rate, and µ is the rate at which immunity is lost.
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Hidden SIRS model
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I Xt only indirectly observed through yt ⇒
hidden Markov model (HMM)

I yt ∼ Binomial(It , ρ)

I ρ depends on the number of
symptomatic infectious individuals that
seek treatment

We are interested in the posterior distribution

Pr(θ|y) ∝ Pr(y |θ)Pr(θ),

where y = (yt0 , . . . , ytn), θ = (β, γ, ρ, α0, . . . , αk ), and

Pr(y|θ)=
∑

X

(
n∏

i=0

Pr(yti |Iti , ρ)

[
Pr(X t0 |φS, φI)

n∏
i=1

p(X ti |X ti−1 ,θ)

])
.

Problem: This likelihood is intractable, because the state space of Xt
is too large even for moderately high population size N.
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Estimation results
Posterior medians and 95% CIs for the parameters of the SIRS
model.

Coefficient Estimate 95% CIs
β × N 0.491 (0.103, 0.945)

γ 0.115 (0.096, 0.142)
(β × N)/γ 4.35 (0.99 , 7.15)

α0 -5.32 (-6.63 , -4.51)
α1 -1.37 (-1.98 , -0.98)
α2 2.18 (1.8 , 2.62)

ρ× N 55.8 (43.4 , 73.5)

Recall:
I N is the population size (set artificially to 10,000).
I β is the infectious contact rate.
I γ is the recovery rate.
I ρ is the reporting rate.
I α(t) = αAi = exp [α0 + α1CWD(i − κ) + α2CWT (i − κ)]
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Prediction results
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What models cause all this trouble?
I Too broad of an answer: partially observed stochastic processes

I Too narrow of an answer: intractable HMMs

I Mouthful, but good enough answer: Markov compartmental
models, with a subset of compartments are observed over time
with noise
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Statistical inference options

I “Exact" likelihood-based methods:
– Bayesian inference with particle MCMC (Koepke et al.)

– Maximum likelihood inference with particle MCMC (Ionides et al.)

I “Exact" summary statistics based methods:
– Approximate Bayesian Computation (Liepe et al.)

– Quasi- and pseudo-maximum likelihood estimators and generalized
methods of moments (Chen and Hyrien, Xu et al.)

I Likelihood approximations:
– Trajectory matching with iid normal error

– Pretending some compartments change slowly (diffusion, branching
processes)

– Emulating with GPs to reduce costly likelihood evaluations (Jandarov et al.)

– Linear noise approximation — makes Markov transition densities Gaussian,
with complicated mean and covariance functions.
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Open problems and glimpses of possible solutions

I Open problem:

– Computationally stable inference procedure that can handle at least 10-100
compartments

I Current lines of attack:

– Ho et al. use clever re-parameterization to develop a new deterministic
algorithm for computing SIR (and more complex) transition densities
“exactly." Doesn’t solve all the problems, because not all compartments are
observed perfectly.

– Approximate Bayesian computation and/or indirect inference. But model
comparison is tough!

– New data augmentation methods with block updates of latent variables.
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