Toolkit for snow cover area calculation and display of Interactive Multisensor Snow and

NTRODUCTION

Snow-Man is a toolkit for snow-cover area calculation and display based on the Interactive Multisensor Snow and Ice Mapping System (IMS)[NIC, 2008]. The Tibetan Plateau region as an example to describe the toolkit's method, and results
The National Snow and Ice Data Center (NSIDC) provides to the public IMS, a well-used system for monitoring the snow and ice cover. A stereographic projection arranges the daily snow and ice coverage data into a grid. IMS provides latitude and longitude coordinates for each grid point; Unfortunately, they don't include the surface areas that each grid point represents.

Snow-Man provides the areas of snow and ice coverage provided by IMS. Furthermore, Snow-Man can display IMS data with maps, and time series, and hence enrich the IMS's capability. Thus, our toolkit can be a useful tool for further studies of snow cover, snow depth-snow water equivalence, climate forecast, and hydrological engineering planning and management.

AREA CALCULATION METHOD

Grid cell areas are modeled as quadrangles, whose corners are the centroids of the surrounding four points. Snow-Man calculates these points and converts them from degrees to meters using the Lambert azimuthal equal area (LAEA) them from degrees to meters using the Lambert azimualrangle is determined using the shoelace formula.[Braden, 1986]

Determine Centroids	Transform to LAEA Projection		Calculate grid areas using shoe lace formula
Figure 1. Flow chart describing area calculation process.			
$x=R k^{\prime} \cos \phi_{1} \sin \left(\lambda \quad \lambda_{0}\right)$			(1)
$y=R k^{\prime}\left[\cos \phi_{1} \sin \phi-\sin \phi_{1} \cos \phi \cos \left(\lambda-\lambda_{0}\right)\right]$			(2)
$k^{\prime}=\sqrt{1+\sin \phi_{1} \sin \phi+\cos \phi_{1} \cos \phi \cos (\lambda}$			(3)
$A_{i j}=\frac{1}{2} \sum_{k=1}^{3} x_{k} y$	$\sum_{k=1}^{3} x_{k+1} y_{k}$		(4)

 Figure 2. Section of grid showing lat-long points with surrounding centroids. Sub figure on the right shows overlay of IMS data. Areas covered in snow are indicated by '1', otherwise ' 0 '.

TIME SERIES GENERATION METHOD

The Snow-Man routine flattens a map consisting of given snow and ice data into a vector of booleans representing snow and ice coverage. Each item of the vector has an associated area, stored in a separate vector. The dot product between these two vectors yields the total area of snow and ice coverage.

RESULTS

Areas calculated using shoelace formula (4) of the Tibetian region were compared with l'Hullier formula and were found to have a distance of 0.0466 $\%$ and 0.0329% difference for 24×24 and $4 \times 4 \mathrm{~km}$ resolutions respectively. Uniform grid assumption and shoe lace methods are plotted side by side, shown in Figure 4. The errors in assuming a uniform grid can be as large as 54.79% and as small as 32.22% over the history of the IMS product. Shown in figure 5, Differences in resolution for regions as large as the Tibetian Plateau are as large as 48.42% during summer months. The coarse resolution isn't able to see smaller ice fields and glaciers.
Differences in resolution vary seasonally. With more snow reported by the 4×4 km data set in the warmer months. Small glaciers and ice fields are too small to be seen by the 24×24 set. The coarser 24×24 also reports more snow during snowy months, suggesting a slight positive bias.

Figure 4. Comparison between 24×24 uniform grid assumption and shoe lace method.

Figure 5. Comparison between $24 \times 24 \mathrm{~km}$ and $4 \times 4 \mathrm{~km}$
resolutions.

Table 1 shows that climate anomalies have a tendency to be negative on average. A positive skew indicates that positive outliers balance out the mean Negative slope on trendlines (figure 6) suggests a slight overall decrease in

Distribution

Distribu Statistics

Skew
Kurtosis
Regression
3.443x $\times 10$ 5

Parameters
thercept $t \mathrm{~km}^{\wedge}$ 2
0.2289

CONCLUSIONS AND FUTURE WORK

The Snow-Man project has shown potential to be a powerful tool for analyzing and displaying IMS data. Finer data sets provide greater accuracy than the coarser but require 'big data' solutions to handle such large files. Current work using database designed project is underway to handle the 1×1 km data set.
The project is limited to those who can program in Python. The best method for expanding the user base for Snow-Man is to develop it into a website. A browser based interface to a continually maintained database is undergoing

development

REFERENCES

Braden, B. (1986). The surveyors area formula. The College Mathematics Journal, 17: 326-337
Snyder, J. P. (1987). Map projections-A working manual, US Government Printing Office.
NIC (2008). National ice center. 2008, updated daily. ims daily northern hemisphere snow and ice analysis at $1 \mathrm{~km}, 4 \mathrm{~km}$, and 24 km resolutions. boulder, co: National snow and ice data center. digital media http://dx.doi.org/10.7265/N52R3PMC.

