Universality for the dimer model

Nathanaël Berestycki University of Cambridge with Benoit Laslier (Paris) and Gourab Ray (Victoria, BC)

Banff, October 2017

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Happy birthday Chris!

Or, more precisely : Wszystkiego najlepszego

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Happy birthday Chris!

Or, more precisely : Wszystkiego najlepszego

э

Burdzy on Google images.

The dimer model

Definition

G = bipartite finite graph, planar Dimer configuration = perfect matching on G: each vertex incident to one edge Dimer model: uniformly chosen configuration

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

On square lattice, equivalent to domino tiling.

Dimer model as random surface

Example: honeycomb lattice

Dimer = lozenge tiling Equivalently: stack of 3d cubes.

CKenyon

3

・ロン ・聞と ・ヨン ・ヨン

Height function

Introduced by Thurston. Hence view as random surface.

Large scale behaviour?

©Kenyon

Main Question:

Given boundary conditions, what is large scale behaviour? Universality? Conformal Invariance?

Choose carefully boundary conditions to avoid frozen regions.

Background

Classical model of statistical mechanics:

Kasteleyn, Temperley–Fisher 1960s Kenyon, Propp, Lieb, Okounkov, Sheffield, Dubédat, Borodin, Petrov, Toninelli, Ferrari, Gorin,... 1990s+

"Exactly Solvable": determinantal structure

e.g.,
$$Z_{m,n} = \prod_{j=1}^{m} \prod_{k=1}^{n} \left| 2\cos(\frac{\pi j}{m+1}) + 2i\cos(\frac{\pi k}{n+1}) \right|^{1/2}$$

Analysis via: discrete complex analysis, Schur polynomials, Young tableaux, algebraic geometry...

Mapping to other models:

Tilings, 6-vertex, XOR Ising, Uniform Spanning Trees (UST)

Theorem

Let $h^{\#\delta}$ = height function on hexagonal lattice, mesh-size = δ . Let $P \subset \mathbb{R}^3$ a plane.

Theorem (B.-Laslier-Ray 2016)

Let $D \subset \mathbb{C}$ simply connected, ∂D locally connected. Assume boundary conditions are close to $P \subset \mathbb{R}^3$. Then

$$(h^{\#\delta} - \mathbb{E}(h^{\#\delta})) \circ \ell \xrightarrow[\delta o 0]{} rac{1}{\chi} h_{\mathsf{GFF}},$$

where $\ell = \text{linear map}$, $\chi = 1/\sqrt{2}$. $h_{\text{GFF}} = \text{Gaussian free field}$ with Dirichlet boundary conditions.

(Convergence in distribution in $H^{-1-\varepsilon}$.)

What is the Gaussian free field?

Informally,
$$\mathbb{P}(f) = \frac{1}{Z} \exp\left(-\frac{1}{2} \int_{D} |\nabla f|^2\right) df$$

GFF = canonical random function on *D*. But too rough to be a function Rigorously: in Sobolev space H^{-s} , $\forall s > 0$

$$(h_{\mathsf{GFF}}, f) \sim \mathcal{N}\left(0, \iint_{D} G_{D}(x, y)f(x)f(y)dxdy\right)$$

where $G_D(\cdot, \cdot) = -(1/2\pi)\Delta^{-1}$ is Green's function in D. \implies conformal invariance

Novelty of approach

Universality of fluctuations

Insight as to why GFF universal? Needed: SRW \rightarrow BM on certain graph. Does not rely on exact solvability Instead: imaginary geometry and SLE

Robustness

Extends Kenyon 2000 (flat case with smooth *D*) Extends to Dimer Model on isoradial graphs Dimer model in random environment

Work in progress:

Riemann surfaces (see later) Generic boundary conditions, assuming no frozen region Temperley's bijection; Kenyon-Sheffield

Start with a UST on graph Γ .

Construct associated dimer config. on a modified graph G

Dimer configurations on $G \leftrightarrow \text{UST}$ on Γ Height function \leftrightarrow Winding of branches in tree

New goal:

Study winding of branches in UST.

Question

How much do you wind around in a random maze?

Temperley's bijection: how does it work (1)?

Pair of dual UST on $(\Gamma, \Gamma^{\dagger}) \leftrightarrow$ dimer on $G = \Gamma \oplus \Gamma^{\dagger}$. [Trees = oriented: each vertex has unique outgoing edge, except on boundary (wired). No cycles allowed.]

Temperley's bijection: how does it work (2)?

Pair of dual UST on $(\Gamma, \Gamma^{\dagger}) \leftrightarrow \text{dimer on } G = \Gamma \oplus \Gamma^{\dagger}$.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Temperley's bijection: how does it work (3)?

Pair of dual UST on $(\Gamma, \Gamma^{\dagger}) \leftrightarrow \text{dimer on } G = \Gamma \oplus \Gamma^{\dagger}$.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Temperley's bijection: how does it work (4)?

Pair of dual UST on $(\Gamma, \Gamma^{\dagger}) \leftrightarrow \text{dimer on } G = \Gamma \oplus \Gamma^{\dagger}$.

(日)、

- 34

Temperley's bijection: how does it work (5)?

Pair of dual UST on $(\Gamma, \Gamma^{\dagger}) \leftrightarrow \text{dimer on } G = \Gamma \oplus \Gamma^{\dagger}$.

Collection of green edges must be a tree because: connected, n vertices and n-1 edges.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Winding in UST

Question

How much do you wind around in a random maze? Answer: the GFF !

Let $h^{\#\delta}$ = winding of branches in UST.

Real main theorem

Let $G^{\#\delta}$ be a sequence of graphs. Assume (*). Then

$$h^{\#\delta} - \mathbb{E}(h^{\#\delta}) \xrightarrow[\delta
ightarrow 0]{0} rac{1}{\chi} h_{\mathsf{GFF}},$$

 $h_{\rm GFF} =$ Gaussian free field (Dirichlet boundary conditions). $\chi = 1/\sqrt{2}$.

Note: $\mathbb{E}(h^{\#\delta})$ itself is **not** universal, only fluctuations!

Assumptions for the theorem

Holds under very general assumptions:

(1) Simple Random Walk on $G^{\#\delta}$ converges to Brownian motion (2) Uniform crossing condition:

("Russo-Seymour-Welsh" estimate)(3) Bounded density of vertices; edges have bounded winding

Ideas for the proof: working in the continuum

Scaling limit of Uniform Spanning Tree

Theorem (Lawler, Schramm, Werner '03, Schramm '00)

 $D \subset \mathbb{C}$

- Uniform spanning tree on D ∩ δZ² → "A continuum tree" (continuum uniform spanning tree).
- Branches of the continuum tree are SLE₂ curves.

Yadin-Yehudayoff 2010: universality (assuming convergence of SRW to BM).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Imaginary Geometry theorem statement

Dubédat, Miller–Sheffield: "flow lines of GFF/χ are SLE_{κ} curves", provided:

$$\chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}.$$

Meaning: coupling (h, η) , h = GFF, $\eta = \text{SLE}_{\kappa}$:

Take-home message

"Values" of h/χ along curve record "winding" of ${\rm SLE}_\kappa$ (in sense of $\arg g'$).

Flow lines of GFF: $e^{ih/\chi}$.

 $\textcircled{C}\mathsf{Miller}{-}\mathsf{Sheffield}$

・ロト ・ 日 ・ ・ 日 ・ ・

Э.

э

$$\chi = 1/\sqrt{2}$$
, flow lines = SLE₂ (Miller–Sheffield).

Suggests "winding" of continuum UST is (1/ χ) GFF.

Extended convergence:

Theorem (B.-Laslier-Ray)

UST and dimer height function converge jointly to (\mathcal{T}, h) where \mathcal{T} is the tree of flow lines of $e^{ih/\chi}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dimers on Riemann surfaces

Q: Impact of curvature on such random structures?

Goal: universal limit "height function" + conformal invariance

In fact, "height function" is a closed 1-form:

Hodge decomposition:

h consists of a function together with **instanton component** (a harmonic function on universal cover).

Flavour of results

Temperley's bijection

We extend Temperley's bijection to Riemann surfaces. Instead of UST, "Temperleyan forests".

Generalising our previous results:

Theorem (BLR '17, in preparation)

Suppose Temperleyan forest converges. Then both components of dimer height function converges.

Temperleyan forests

Definition: Temperleyan forest

Oriented subgraph T^{\dagger} of Γ^{\dagger} :

- $\forall v \notin \partial \Gamma^{\dagger}$, unique outgoing edge (except on boundary = wired).
- Every cycle is non-contractible.
- Each connected component of T contains at most one cycle.

Ex: non-Temperleyan:

Low Euler characteristic

When Euler's $\chi = 0$ (i.e., annulus or torus) then we show Temperleyan forest reduces to **Cycle Rooted Spanning Forest**. More precisely: derivative $\frac{d\mathbb{P}_{\text{Temp}}}{d\mathbb{P}_{\text{CRSE}}} = 2^{\#\{dual \ cycles\}}$.

Advantage: Wilson's algorithm.

Scaling limit of CRSF

Theorem (B.-Laslier-Ray)

Assume $(\star\star)$. Then CRSF converges in Schramm space to universal scaling limit. + subexponential tail for # dual cycles.

(Solves some conjectures by Kassel-Kenyon.)

Corollary

Dimer height function converges when $\chi = 0$. Both components are **universal, conformally invariant**.

In torus case, proves conjecture by Dubédat

In progress

Can handle Riemann surfaces of low complexity (Euler's $\chi = 0$) at this stage. Work on case $\chi < 0$ in progress.

Many questions remain:

- Law of limit?
- Tilted dimer measures on surfaces?
- Generic boundary conditions in planar domains?
- Gaseous phases?
- Link with exactly solvable approach (Borodin–Gorin–Guionnet, Petrov, etc.)

▶ ...

THANK YOU!