Stability of heat kernel estimates for symmetric non-local Dirichlet forms and its applications

Jian Wang

Fujian Normal University

mainly with Zhen-Qing Chen and Takashi Kumagai Stochastic Analysis and its Applications, Banff

Outline

- Motivation
- Main results
 - Heat kernel estimates
 - Harnack inequalities
- **3** Long range random walks in random media

• Gaussian HKE: Let $L = \sum_{i,j=1}^{d} \frac{\partial}{\partial x_i} (a_{ij}(x) \frac{\partial}{\partial x_j})$ be a uniform elliptic div. form on \mathbb{R}^d ($\sigma^{-1}I \leq (a_{ij}(x)) \leq \sigma I$ for some $\sigma > 0$). Then,

$$\frac{c_1}{t^{d/2}} \exp\left(-c_2 \frac{|x-y|^2}{t}\right) \leqslant p(t,x,y) \leqslant \frac{c_3}{t^{d/2}} \exp\left(-c_4 \frac{|x-y|^2}{t}\right)$$

for all t > 0 and $x, y \in \mathbb{R}^d$, see Aronson ('67).

• Stability of Gaussian HKE: Gaussian HKE ⇔ VD + PI(2)⇔ PHI(2), see Grigor'yan ('91), Saloff-Coste ('92), Sturm ('96)

• Gaussian HKE: Let $L = \sum_{i,j=1}^{d} \frac{\partial}{\partial x_i} (a_{ij}(x) \frac{\partial}{\partial x_j})$ be a uniform elliptic div. form on \mathbb{R}^d ($\sigma^{-1}I \leq (a_{ij}(x)) \leq \sigma I$ for some $\sigma > 0$). Then,

$$\frac{c_1}{t^{d/2}} \exp\left(-c_2 \frac{|x-y|^2}{t}\right) \leqslant p(t,x,y) \leqslant \frac{c_3}{t^{d/2}} \exp\left(-c_4 \frac{|x-y|^2}{t}\right)$$

for all t > 0 and $x, y \in \mathbb{R}^d$, see Aronson ('67).

Stability of Gaussian HKE:
 Gaussian HKE ⇔ VD + PI(2)⇔ PHI(2),
 see Grigor'yan ('91), Saloff-Coste ('92), Sturm ('96).

• Sub-Gaussian HKE: Diffusions on 'nice' fractals $M: \exists d_w \ge 2$ such that

$$\frac{c_1}{\mu(B(x, t^{1/d_w}))} \exp\left(-c_2 \left(\frac{d(x, y)^{d_w}}{t}\right)^{\frac{1}{d_w-1}}\right) \\
\leqslant p(t, x, y) \\
\leqslant \frac{c_3}{\mu(B(x, t^{1/d_w}))} \exp\left(-c_4 \left(\frac{d(x, y)^{d_w}}{t}\right)^{\frac{1}{d_w-1}}\right)$$

for all t > 0 and $x, y \in M$. See Barlow-Perkins, \cdots

• Stability of sub-Gaussian HKE: Sub-Gaussian HKE $\Leftrightarrow VD + PI(d_w) + \mathbf{CS}(d_w) \Leftrightarrow PHI(d_w)$. See Barlow-Bass, Barlow-Bass-Kumagai, Andres-Barlow Grigor'yan-Hu-Lau.

• Sub-Gaussian HKE: Diffusions on 'nice' fractals $M: \exists d_w \ge 2$ such that

$$\frac{c_1}{\mu(B(x,t^{1/d_w}))} \exp\left(-c_2\left(\frac{d(x,y)^{d_w}}{t}\right)^{\frac{1}{d_w-1}}\right)$$

$$\leqslant p(t,x,y)$$

$$\leqslant \frac{c_3}{\mu(B(x,t^{1/d_w}))} \exp\left(-c_4\left(\frac{d(x,y)^{d_w}}{t}\right)^{\frac{1}{d_w-1}}\right)$$

for all t > 0 and $x, y \in M$. See Barlow-Perkins, \cdots

• Stability of sub-Gaussian HKE: Sub-Gaussian HKE $\Leftrightarrow VD + PI(d_w) + CS(d_w) \Leftrightarrow PHI(d_w)$. See Barlow-Bass, Barlow-Bass-Kumagai, Andres-Barlow, Grigor'yan-Hu-Lau.

Stability of heat kernel estimates: jump case

Theorem (Chen-Kumagai, '03)

Let $\mu(B(x,r)) \approx r^d$ for all $x \in M$ and r > 0, and $\alpha \in (0,2)$. Then,

$$\mathcal{E}(f) \approx \iint_{M \times M} \frac{(f(x) - f(y))^2}{d(x, y)^{d + \alpha}} \, \mu(dx) \, \mu(dy)$$

if and only if

$$p(t, x, y) \approx \frac{1}{t^{d/\alpha}} \wedge \frac{t}{d(x, y)^{d+\alpha}}, \quad t > 0, x, y \in M.$$

Stability of heat kernel estimates: jump case

Theorem (Chen-Kumagai, '03)

Let $\mu(B(x,r)) \simeq r^d$ for all $x \in M$ and r > 0, and $\alpha \in (0,2)$. Then,

$$\mathcal{E}(f) \asymp \iint_{M \times M} \frac{(f(x) - f(y))^2}{d(x, y)^{d + \alpha}} \, \mu(dx) \, \mu(dy)$$

if and only if

$$p(t,x,y) \asymp \frac{1}{t^{d/\alpha}} \wedge \frac{t}{d(x,y)^{d+\alpha}}, \quad t > 0, x, y \in M.$$

Stability of heat kernel estimates: jump case

Theorem (Chen-Kumagai, '03)

Let $\mu(B(x,r)) \simeq r^d$ for all $x \in M$ and r > 0, and $\alpha \in (0,2)$. Then,

$$\mathcal{E}(f) \asymp \iint_{M \times M} \frac{(f(x) - f(y))^2}{d(x, y)^{d + \alpha}} \, \mu(dx) \, \mu(dy)$$

if and only if

$$p(t,x,y) \asymp \frac{1}{t^{d/\alpha}} \wedge \frac{t}{d(x,y)^{d+\alpha}}, \quad t > 0, x, y \in M.$$

Motivation

• On fractals, one can define α -stable process even for $2 \leqslant \alpha < d_w$.

Question

(Question from example) Let M be a Sierpinski gasket on \mathbb{R}^2 , and $\mu(B(x,r)) \approx r^d$ with $d = \frac{\log 3}{\log 2}$. Let

$$\mathcal{E}(f) \asymp \iint_{M \times M} \frac{(f(x) - f(y))^2}{|x - y|^{d + \alpha}} \, \mu(dx) \, \mu(dy),$$

where $\alpha \in (0, \frac{\log 5}{\log 2})$ (possibly $\alpha \geqslant 2$). What is HKE?

Solution: Stability

• Brownian motions on $SG(\mathbb{R}^2)$:

$$p_*(t,x,y) \approx t^{-d/d_w} \exp\left(-c\left(\frac{|x-y|^{d_w}}{t}\right)^{\frac{1}{d_w-1}}\right),$$

where $d_w = \frac{\log 5}{\log 2} > 2$, see Barlow-Perkins.

Subordination:

$$p_*^S(t,x,y) \simeq \frac{1}{t^{d/\alpha}} \wedge \frac{t}{|x-y|^{d+\alpha}},$$

where $\alpha \in (0, d_w)$. Moreover,

$$\mathcal{E}_*^{\mathcal{S}}(f) \asymp \iint_{M \times M} \frac{(f(x) - f(y))^2}{|x - y|^{d + \alpha}} \, \mu(dx) \, \mu(dy).$$

Stability:

$$\mathcal{E}(f) \approx \iint_{M \times M} \frac{(f(x) - f(y))^2}{|x - y|^{d + \alpha}} \, \mu(dx) \, \mu(dy)$$

implies

Solution: Stability

• Brownian motions on $SG(\mathbb{R}^2)$:

$$p_*(t, x, y) \approx t^{-d/d_w} \exp\left(-c\left(\frac{|x - y|^{d_w}}{t}\right)^{\frac{1}{d_w - 1}}\right),$$

where $d_w = \frac{\log 5}{\log 2} > 2$, see Barlow-Perkins.

Subordination:

$$p_*^S(t,x,y) \simeq \frac{1}{t^{d/\alpha}} \wedge \frac{t}{|x-y|^{d+\alpha}},$$

where $\alpha \in (0, d_w)$. Moreover,

$$\mathcal{E}_*^{\mathcal{S}}(f) \asymp \iint_{M \times M} \frac{(f(x) - f(y))^2}{|x - y|^{d + \alpha}} \, \mu(dx) \, \mu(dy).$$

Stability:

$$\mathcal{E}(f) \asymp \iint_{M \times M} \frac{(f(x) - f(y))^2}{|x - y|^{d + \alpha}} \, \mu(dx) \, \mu(dy)$$

implies

$$p(t,x,y) \approx p_*^S(t,x,y).$$

Outline

- Motivation
- Main results
 - Heat kernel estimates
 - Harnack inequalities
- Long range random walks in random media

Settings

- MMS (M, d, μ) . Let $V(x, r) = \mu(B(x, r))$ for all $x \in M$ and r > 0.
- VD and RVD

$$c_1\left(\frac{R}{r}\right)^{d_1} \leqslant \frac{V(x,R)}{V(x,r)} \leqslant c_2\left(\frac{R}{r}\right)^{d_2}, \quad x \in M, 0 < r < R.$$

•

$$\mathcal{E}(f,g) = \iint_{M \times M} (f(x) - f(y))(g(x) - g(y)) J(dx, dy).$$

• Scaling function ϕ :

$$c_3 \left(\frac{R}{r}\right)^{eta_1} \leqslant rac{\phi(R)}{\phi(r)} \leqslant c_4 \left(\frac{R}{r}\right)^{eta_2}, \quad 0 < r < R.$$

• Example: BM $\phi(r) = r^2$; symmetric α -stable $\phi(r) = r^{\alpha}$.

Settings

- MMS (M, d, μ) . Let $V(x, r) = \mu(B(x, r))$ for all $x \in M$ and r > 0.
- VD and RVD

$$c_1\left(\frac{R}{r}\right)^{d_1} \leqslant \frac{V(x,R)}{V(x,r)} \leqslant c_2\left(\frac{R}{r}\right)^{d_2}, \quad x \in M, 0 < r < R.$$

•

$$\mathcal{E}(f,g) = \iint_{M \times M} (f(x) - f(y))(g(x) - g(y)) J(dx, dy).$$

• Scaling function ϕ :

$$c_3 \left(\frac{R}{r}\right)^{\beta_1} \leqslant \frac{\phi(R)}{\phi(r)} \leqslant c_4 \left(\frac{R}{r}\right)^{\beta_2}, \quad 0 < r < R.$$

• Example: BM $\phi(r) = r^2$; symmetric α -stable $\phi(r) = r^{\alpha}$.

Heat kernel

 \bullet $HK(\phi)$:

$$p(t,x,y) \asymp \frac{1}{V(x,\phi^{-1}(t))} \wedge \frac{t}{V(x,d(x,y))\phi(d(x,y))}.$$

• Example: symmetric α -stable processes on \mathbb{R}^d

$$p(t, x, y) \approx \frac{1}{t^{d/\alpha}} \wedge \frac{t}{|x - y|^{d+\alpha}}$$

Jump kernel

 \bullet J_{ϕ} :

$$J(x,y) \simeq \frac{1}{V(x,d(x,y))\phi(d(x,y))}.$$

• Example: symmetric α -stable processes on \mathbb{R}^d

$$J(x,y) \simeq \frac{1}{|x-y|^{d+\alpha}}.$$

 \bullet $HK(\phi)$:

$$p(t,x,y) \asymp \frac{1}{V(x,\phi^{-1}(t))} \wedge \frac{t}{V(x,d(x,y))\phi(d(x,y))}.$$

$$J(x,y) = \lim_{t \to 0} \frac{p(t,x,y)}{t}$$

Jump kernel

 \bullet J_{ϕ} :

$$J(x,y) \simeq \frac{1}{V(x,d(x,y))\phi(d(x,y))}.$$

• Example: symmetric α -stable processes on \mathbb{R}^d

$$J(x,y) \approx \frac{1}{|x-y|^{d+\alpha}}.$$

 \bullet $HK(\phi)$:

$$p(t,x,y) \asymp \frac{1}{V(x,\phi^{-1}(t))} \wedge \frac{t}{V(x,d(x,y))\phi(d(x,y))}.$$

•

$$J(x,y) = \lim_{t \to 0} \frac{p(t,x,y)}{t}.$$

Theorem (Chen-Kumagai-W.)

The following are equivalent:

- (i) $HK(\phi)$
- (ii) J_{ϕ} and $CSJ(\phi)$.
 - $CSJ(\phi)$: For $0 < r \le R, f \in \mathcal{F}$ and almost all $x \in M$, there exists a cutoff function φ for $B(x,R) \subset B(x,R+r)$ so that the following holds:

$$\int_{U^*} f^2 d\Gamma(\varphi, \varphi) \leqslant C_1 \int_{U \times U^*} (f(x) - f(y))^2 J(dx, dy) + \frac{C_2}{\phi(r)} \int_{U^*} f^2 d\mu,$$

- where $U^* = B(x, R + (1 + C_0)r) \setminus B(x, R C_0r)$, $C_0 \in (0, 1]$ and $U = B(x, R + r) \setminus B(x, R)$.
- $CSJ(\phi)$ holds trivially for the case that $\phi(r) = r^{\alpha}$ with $\alpha \in (0,2)$; for diffusions, we should take U^* as U (Andres-Barlow, '15).

Theorem (Chen-Kumagai-W.)

The following are equivalent:

- (i) $HK(\phi)$
- (ii) J_{ϕ} and $CSJ(\phi)$.
 - $CSJ(\phi)$: For $0 < r \le R$, $f \in \mathcal{F}$ and almost all $x \in M$, there exists a cutoff function φ for $B(x,R) \subset B(x,R+r)$ so that the following holds:

$$\int_{U^*} f^2 d\Gamma(\varphi,\varphi) \leqslant C_1 \int_{U \times U^*} (f(x) - f(y))^2 J(dx,dy) + \frac{C_2}{\phi(r)} \int_{U^*} f^2 d\mu,$$

where $U^* = B(x, R + (1 + C_0)r) \setminus B(x, R - C_0r), C_0 \in (0, 1]$ and $U = B(x, R + r) \setminus B(x, R)$.

• $CSJ(\phi)$ holds trivially for the case that $\phi(r) = r^{\alpha}$ with $\alpha \in (0,2)$; for

Theorem (Chen-Kumagai-W.)

The following are equivalent:

- (i) $HK(\phi)$
- (ii) J_{ϕ} and $CSJ(\phi)$.
 - $CSJ(\phi)$: For $0 < r \le R, f \in \mathcal{F}$ and almost all $x \in M$, there exists a cutoff function φ for $B(x,R) \subset B(x,R+r)$ so that the following holds:

$$\int_{U^*} f^2 d\Gamma(\varphi, \varphi) \leqslant C_1 \int_{U \times U^*} (f(x) - f(y))^2 J(dx, dy) + \frac{C_2}{\phi(r)} \int_{U^*} f^2 d\mu,$$

where $U^* = B(x, R + (1 + C_0)r) \setminus B(x, R - C_0r)$, $C_0 \in (0, 1]$ and $U = B(x, R + r) \setminus B(x, R)$.

• $CSJ(\phi)$ holds trivially for the case that $\phi(r) = r^{\alpha}$ with $\alpha \in (0, 2)$; for diffusions, we should take U^* as U (Andres-Barlow, '15).

Theorem (Chen-Kumagai-W.)

The following are equivalent:

- (i) $HK(\phi)$
- (ii) J_{ϕ} and $CSJ(\phi)$.
 - $CSJ(\phi)$: For $0 < r \le R, f \in \mathcal{F}$ and almost all $x \in M$, there exists a cutoff function φ for $B(x,R) \subset B(x,R+r)$ so that the following holds:

$$\int_{U^*} f^2 d\Gamma(\varphi,\varphi) \leqslant C_1 \int_{U \times U^*} (f(x) - f(y))^2 J(dx,dy) + \frac{C_2}{\phi(r)} \int_{U^*} f^2 d\mu,$$

where $U^* = B(x, R + (1 + C_0)r) \setminus B(x, R - C_0r)$, $C_0 \in (0, 1]$ and $U = B(x, R + r) \setminus B(x, R)$.

• $CSJ(\phi)$ holds trivially for the case that $\phi(r) = r^{\alpha}$ with $\alpha \in (0, 2)$; for diffusions, we should take U^* as U (Andres-Barlow, '15).

Counterexample

Example $(J_{\phi} \text{ only does not imply } HK(\phi).)$

Let $M = \mathbb{R}^d$, $\phi(r) = r^{\alpha} + r^{\beta}$ with $0 < \alpha < 2 < \beta$, and

$$J(x,y) \approx \frac{1}{|x-y|^d \phi(|x-y|)}, \quad x,y \in \mathbb{R}^d.$$

Then, J_{ϕ} holds, but $HK(\phi)$ does not hold.

• $CSJ(\phi^*)$ holds with $\phi^*(r) \approx r^{\alpha} + r^2$.

•

$$HK(\phi) \iff J_{\phi} + CSJ(\phi).$$

• Stability of $HK(\alpha)$ for d-set also proved by Grigor'yan-E. Hu-J. Hu, Murugan-Saloff-Coste.

Counterexample

Example $(J_{\phi} \text{ only does not imply } HK(\phi).)$

Let $M = \mathbb{R}^d$, $\phi(r) = r^{\alpha} + r^{\beta}$ with $0 < \alpha < 2 < \beta$, and

$$J(x,y) \approx \frac{1}{|x-y|^d \phi(|x-y|)}, \quad x,y \in \mathbb{R}^d.$$

Then, J_{ϕ} holds, but $HK(\phi)$ does not hold.

• $CSJ(\phi^*)$ holds with $\phi^*(r) \approx r^{\alpha} + r^2$.

•

$$HK(\phi) \iff J_{\phi} + CSJ(\phi).$$

• Stability of $HK(\alpha)$ for d-set also proved by Grigor'yan-E. Hu-J. Hu, Murugan-Saloff-Coste.

Outline

- Motivation
- Main results
 - Heat kernel estimates
 - Harnack inequalities
- Long range random walks in random media

Harmonic and parabolic functions

 $X := (X_t)_{t \ge 0}$ is a MP, and $Z := (V_s, X_s)_{s \ge 0}$ is a time-space process where $V_s = V_0 - s$.

- u(x) is *harmonic* on an open set $D \subset M$, if for every relatively compact open subset D_1 of D, $u(x) = \mathbb{E}^x u(X_{\tau_{D_1}})$ for all $x \in D_1$.
- u(t,x) is *parabolic* on an open set $D \subset (0,\infty) \times M$, if for every relatively compact open subset D_1 of D,

$$u(t,x) = \mathbb{E}^{(t,x)}u(Z_{\tau_{D_1}})$$

for every $(t, x) \in D_1$.

Harmonic and parabolic functions

 $X := (X_t)_{t \ge 0}$ is a MP, and $Z := (V_s, X_s)_{s \ge 0}$ is a time-space process where $V_s = V_0 - s$.

- u(x) is *harmonic* on an open set $D \subset M$, if for every relatively compact open subset D_1 of D, $u(x) = \mathbb{E}^x u(X_{\tau_{D_1}})$ for all $x \in D_1$.
- u(t,x) is *parabolic* on an open set $D \subset (0,\infty) \times M$, if for every relatively compact open subset D_1 of D,

$$u(t,x) = \mathbb{E}^{(t,x)}u(Z_{\tau_{D_1}})$$

for every $(t, x) \in D_1$.

Parabolic Harnack inequalities

• $PHI(\phi)$: there exist constants $0 < C_1 < C_2 < C_3 < C_4$, $C_5 > 1$ and $C_6 > 0$ such that for every $x_0 \in M$, $t_0 \ge 0$, R > 0 and for every non-negative function u = u(t, x) that is parabolic on $Q := (t_0, t_0 + \phi(C_4R)) \times B(x_0, C_5R)$,

$$\sup_{Q_-} u \leqslant C_6 \inf_{Q_+} u,$$

where
$$Q_- := (t_0 + \phi(C_1R), t_0 + \phi(C_2R)) \times B(x_0, R)$$
 and $Q_+ := (t_0 + \phi(C_3R), t_0 + \phi(C_4R)) \times B(x_0, R)$.

Theorem (Grigor'yan; Saloff-Coste)

For diffusions on manifolds, Gaussian HKE \iff PHI(2) \iff VD + PI(2).

Parabolic Harnack inequalities

• $PHI(\phi)$: there exist constants $0 < C_1 < C_2 < C_3 < C_4$, $C_5 > 1$ and $C_6 > 0$ such that for every $x_0 \in M$, $t_0 \ge 0$, R > 0 and for every non-negative function u = u(t, x) that is parabolic on $Q := (t_0, t_0 + \phi(C_4R)) \times B(x_0, C_5R)$,

$$\sup_{Q_-} u \leqslant C_6 \inf_{Q_+} u,$$

where
$$Q_- := (t_0 + \phi(C_1R), t_0 + \phi(C_2R)) \times B(x_0, R)$$
 and $Q_+ := (t_0 + \phi(C_3R), t_0 + \phi(C_4R)) \times B(x_0, R)$.

Theorem (Grigor'yan; Saloff-Coste)

For diffusions on manifolds, Gaussian HKE \iff PHI(2) \iff VD + PI(2).

Theorem (Chen-Kumagai-W.)

The following are equivalent:

- (i) $PHI(\phi)$.
- (ii) $J_{\phi,\leqslant}$, UJS, $CSJ(\phi)$ and $PI(\phi)$.
 - $PI(\phi)$: There exist constants C > 0 and $\kappa \ge 1$ such that for any ball $B_r = B(x, r)$ and for any $f \in \mathcal{F}$,

$$\int_{B_r} \left(f - \frac{1}{\mu(B_r)} \int_{B_r} f \, d\mu \right)^2 d\mu \leqslant C\phi(r) \iint_{B_{RI} \times B_{RI}} (f(y) - f(x))^2 J(dx, dy).$$

Theorem (Chen-Kumagai-W.)

The following are equivalent:

- (i) $PHI(\phi)$.
- (ii) $J_{\phi,\leqslant}$, UJS, $CSJ(\phi)$ and $PI(\phi)$.
 - \bullet $J_{\phi,\leqslant}$:

$$J(x,y) \leqslant \frac{c}{V(x,d(x,y))\phi(d(x,y))}.$$

• *UJS*: for almost all $x, y \in M$,

$$J(x,y) \leqslant \frac{c}{V(x,r)} \int_{B(x,r)} J(z,y) \, \mu(dz), \quad r \leqslant \frac{1}{2} d(x,y),$$

see Barlow-Bass-Kumagai.

Theorem (Chen-Kumagai-W.)

The following are equivalent:

- (i) $PHI(\phi)$.
- (iii) UJS, $UHK(\phi)$ and $NDL(\phi)$.

Corollary

$$HK(\phi) \iff PHI(\phi) + J_{\phi,\geqslant}.$$

Theorem (Chen-Kumagai-W.)

The following are equivalent:

- (i) $PHI(\phi)$.
- (iii) UJS, $UHK(\phi)$ and $NDL(\phi)$.

Corollary

$$HK(\phi) \iff PHI(\phi) + J_{\phi,\geqslant}$$
.

Counterexample

Example (Dyda-Kassmann, '15; $PHI(\phi)$ only does not imply $HK(\phi)$.)

Let $M = \mathbb{R}^d$ and $0 < \alpha < 2$. For $0 < \theta < 1$ and $v \in \mathbb{R}^d$ with |v| = 1, define $A = \{h \in \mathbb{R}^d : |(h/|h|, v)| \ge \theta\}$ and

$$J(x, y) = 1_A(x - y)|x - y|^{-d - \alpha}.$$

Then, $PHI(\phi)$ holds, but $HK(\phi)$ does not hold.

Elliptic Harnack inequalities

Theorem (Chen-Kumagai-W.)

The following are equivalent:

- (i) $PHI(\phi)$.
- (iv) *EHI*, E_{ϕ} , *UJS* and $J_{\phi,\leqslant}$.
 - (v) WEHI(ϕ), E_{ϕ} and UJS.
- (vi) *EHR*, E_{ϕ} and *UJS*.
 - \bullet E_{ϕ} :

$$\mathbb{E}\tau_{B(x,r)} \asymp \phi(r), \quad x \in M, r > 0.$$

• $WEHI(\phi)$

$$\frac{1}{\mu(B(x_0,r))} \int_{B(x_0,r)} u \, d\mu \leqslant c \left(\inf_{B(x_0,r)} u + \frac{\phi(r)}{\phi(R)} Tail\left(u_-; x_0, R\right) \right)$$

• $WEHI(\phi)$ implies EHR.

Elliptic Harnack inequalities

Theorem (Chen-Kumagai-W.)

The following are equivalent:

- (i) $PHI(\phi)$.
- (iv) *EHI*, E_{ϕ} , *UJS* and $J_{\phi,\leqslant}$.
- (v) WEHI(ϕ), E_{ϕ} and UJS.
- (vi) *EHR*, E_{ϕ} and *UJS*.
 - \bullet E_{ϕ} :

$$\mathbb{E}\tau_{B(x,r)} \simeq \phi(r), \quad x \in M, r > 0.$$

• $WEHI(\phi)$

$$\frac{1}{\mu(B(x_0,r))} \int_{B(x_0,r)} u \, d\mu \leqslant c \left(\inf_{B(x_0,r)} u + \frac{\phi(r)}{\phi(R)} Tail \left(u_-; x_0, R \right) \right)$$

• $WEHI(\phi)$ implies EHR.

Elliptic Harnack inequalities

Theorem (Chen-Kumagai-W.)

The following are equivalent:

- (i) $PHI(\phi)$.
- (iv) *EHI*, E_{ϕ} , *UJS* and $J_{\phi,\leqslant}$.
- (v) WEHI(ϕ), E_{ϕ} and UJS.
- (vi) *EHR*, E_{ϕ} and *UJS*.
 - \bullet E_{ϕ} :

$$\mathbb{E}\tau_{B(x,r)} \simeq \phi(r), \quad x \in M, r > 0.$$

• $WEHI(\phi)$:

$$\frac{1}{\mu(B(x_0,r))} \int_{B(x_0,r)} u \, d\mu \leqslant c \left(\inf_{B(x_0,r)} u + \frac{\phi(r)}{\phi(R)} Tail\left(u_-; x_0, R\right) \right).$$

• $WEHI(\phi)$ implies EHR.

Elliptic Harnack inequalities

Theorem (Chen-Kumagai-W.)

The following are equivalent:

- (i) $PHI(\phi)$.
- (iv) *EHI*, E_{ϕ} , *UJS* and $J_{\phi,\leqslant}$.
- (v) WEHI(ϕ), E_{ϕ} and UJS.
- (vi) *EHR*, E_{ϕ} and *UJS*.
 - \bullet E_{ϕ} :

$$\mathbb{E}\tau_{B(x,r)} \simeq \phi(r), \quad x \in M, r > 0.$$

• $WEHI(\phi)$:

$$\frac{1}{\mu(B(x_0,r))} \int_{B(x_0,r)} u \, d\mu \leqslant c \left(\inf_{B(x_0,r)} u + \frac{\phi(r)}{\phi(R)} Tail\left(u_-; x_0, R\right) \right).$$

• $WEHI(\phi)$ implies EHR.

- Z.-Q. Chen, T. Kumagai and Wang. Stability of heat kernel estimates for symmetric non-local Dirichlet forms. arXiv:1604.04035.
- Z.-Q. Chen, T. Kumagai and Wang. Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms. arXiv:1609.07594.
- Z.-Q. Chen, T. Kumagai and Wang. Elliptic Harnack inequalities for symmetric non-local Dirichlet forms. arXiv:1703.09385.
- X. Chen, T. Kumagai and Wang. On random conductance models with long range jumps.

- Z.-Q. Chen, T. Kumagai and Wang. Stability of heat kernel estimates for symmetric non-local Dirichlet forms. arXiv:1604.04035.
- Z.-Q. Chen, T. Kumagai and Wang. Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms. arXiv:1609.07594.
- Z.-Q. Chen, T. Kumagai and Wang. Elliptic Harnack inequalities for symmetric non-local Dirichlet forms. arXiv:1703.09385.
- X. Chen, T. Kumagai and Wang. On random conductance models with long range jumps.

- Consider a countable set \mathcal{V} , and let $C: \mathcal{V} \times \mathcal{V} \to [0, \infty)$ such that $C_{x,y} = C_{y,x}$ and $0 < \sum_{y \in \mathcal{V}} C_{x,y} < \infty$ for any $x, y \in \mathcal{V}$.
- Long range random walks:

$$C_{x,y} = \frac{w_{x,y}}{|x - y|^{d + \alpha}}, \quad x, y \in \mathbb{Z}^d,$$

- Bass-Levin ('02): two-sided heat kernel estimates.
- $\{w_{x,y}: x,y \in \mathbb{Z}^d\}$ is a sequence of random variables.

- Consider a countable set \mathcal{V} , and let $C: \mathcal{V} \times \mathcal{V} \to [0, \infty)$ such that $C_{x,y} = C_{y,x}$ and $0 < \sum_{y \in \mathcal{V}} C_{x,y} < \infty$ for any $x, y \in \mathcal{V}$.
- Long range random walks:

$$C_{x,y} = \frac{\mathbf{w}_{x,y}}{|x-y|^{d+\alpha}}, \quad x,y \in \mathbb{Z}^d,$$

- Bass-Levin ('02): two-sided heat kernel estimates.
- $\{w_{x,y}: x,y \in \mathbb{Z}^d\}$ is a sequence of random variables.

- Consider a countable set \mathcal{V} , and let $C: \mathcal{V} \times \mathcal{V} \to [0, \infty)$ such that $C_{x,y} = C_{y,x}$ and $0 < \sum_{y \in \mathcal{V}} C_{x,y} < \infty$ for any $x, y \in \mathcal{V}$.
- Long range random walks:

$$C_{x,y} = \frac{\mathbf{w}_{x,y}}{|x-y|^{d+\alpha}}, \quad x,y \in \mathbb{Z}^d,$$

- Bass-Levin ('02): two-sided heat kernel estimates.
- $\{w_{x,y}: x,y \in \mathbb{Z}^d\}$ is a sequence of random variables.

- Consider a countable set \mathcal{V} , and let $C: \mathcal{V} \times \mathcal{V} \to [0, \infty)$ such that $C_{x,y} = C_{y,x}$ and $0 < \sum_{y \in \mathcal{V}} C_{x,y} < \infty$ for any $x, y \in \mathcal{V}$.
- Long range random walks:

$$C_{x,y} = \frac{\mathbf{w}_{x,y}}{|x-y|^{d+\alpha}}, \quad x,y \in \mathbb{Z}^d,$$

- Bass-Levin ('02): two-sided heat kernel estimates.
- $\{w_{x,y}: x,y \in \mathbb{Z}^d\}$ is a sequence of random variables.

QIP: definition

- For every $n \ge 1$ and $\omega \in \Omega$, we define a process $X_{\cdot,n}^{\omega}$ on $\mathbb{Z}_n^d := n^{-1}\mathbb{Z}^d$ by $X_{t,n}^{\omega} := n^{-1}X_{n^{\alpha}t}^{\omega}$ for any t > 0. Let $\mathbb{P}_{x,n}^{\omega}$ be the law of $X_{\cdot,n}^{\omega}$ with initial point $x \in \mathbb{Z}_n^d$.
- We say that the quenched invariance principle (QIP) holds for X^{ω} with limit process being Y, if for \mathbb{P} -a.s. $\omega \in \Omega$ and every T > 0, $\mathbb{P}^{\omega}_{\cdot,n}$ converges weakly to $\mathbb{P}^{Y}_{\cdot,n}$ on the space of all probability measures on $\mathcal{D}([0,T];\mathbb{R}^{d})$.

QIP: main result

Theorem (Chen-Kumagai-W.)

Let $d > 5 - 2\alpha$. Suppose that $\{w_{x,,y} : x, y \in \mathbb{Z}^d\}$ is a sequence of positive independent random variables such that

$$\sup_{x,y\in\mathbb{Z}^d} \mathbb{E}[w_{x,y}^{\mathbf{p}}] + \sup_{x,y\in\mathbb{Z}^d} \mathbb{E}[w_{x,y}^{-\mathbf{q}}] < \infty$$

with $p > (d+1)/(2-\alpha)$ and q > 2(d+1)/d. Then the quenched invariance principle holds for X^{ω} with the limit process by a symmetric α -stable Lévy process Y on \mathbb{R}^d with jumping measure $c_0|z|^{-d-\alpha}dz$, where $c_0 = \mathbb{E}w_{x,y}$.

- Reflected symmetric α -stable Lévy process Y on bounded domain.
- Symmetric Lévy processes Y with jumping measure $\frac{1}{|z|^d \phi(|z|)} dz$.

QIP: main result

Theorem (Chen-Kumagai-W.)

Let $d > 5 - 2\alpha$. Suppose that $\{w_{x,,y} : x, y \in \mathbb{Z}^d\}$ is a sequence of positive independent random variables such that

$$\sup_{x,y\in\mathbb{Z}^d} \mathbb{E}[w_{x,y}^{\mathbf{p}}] + \sup_{x,y\in\mathbb{Z}^d} \mathbb{E}[w_{x,y}^{-\mathbf{q}}] < \infty$$

with $p > (d+1)/(2-\alpha)$ and q > 2(d+1)/d. Then the quenched invariance principle holds for X^{ω} with the limit process by a symmetric α -stable Lévy process Y on \mathbb{R}^d with jumping measure $c_0|z|^{-d-\alpha}dz$, where $c_0 = \mathbb{E}w_{x,y}$.

- Reflected symmetric α -stable Lévy process Y on bounded domain.
- Symmetric Lévy processes Y with jumping measure $\frac{1}{|z|^d \phi(|z|)} dz$.

QIP: main result

Theorem (Chen-Kumagai-W.)

Let $d > 5 - 2\alpha$. Suppose that $\{w_{x,,y} : x, y \in \mathbb{Z}^d\}$ is a sequence of positive independent random variables such that

$$\sup_{x,y\in\mathbb{Z}^d} \mathbb{E}[w_{x,y}^{\mathbf{p}}] + \sup_{x,y\in\mathbb{Z}^d} \mathbb{E}[w_{x,y}^{-\mathbf{q}}] < \infty$$

with $p > (d+1)/(2-\alpha)$ and q > 2(d+1)/d. Then the quenched invariance principle holds for X^{ω} with the limit process by a symmetric α -stable Lévy process Y on \mathbb{R}^d with jumping measure $c_0|z|^{-d-\alpha}dz$, where $c_0 = \mathbb{E}w_{x,y}$.

- Reflected symmetric α -stable Lévy process Y on bounded domain.
- Symmetric Lévy processes Y with jumping measure $\frac{1}{|z|^d \phi(|z|)} dz$.

• Harmonic embedding and the corrector:

$$X_t = M_t + \chi(\omega, X_t),$$

where M_t is a martingale and $\chi(\omega, X_t)$ is a corrector.

However, for

$$C_{x,y} = \frac{w_{x,y}}{|x - y|^{d+\alpha}}, \quad x, y \in \mathbb{Z}^d$$

with $\alpha \in (0, 2)$,

$$\sum_{y\in\mathbb{Z}^d}|x-y|^2C_{x,y}=\infty.$$

• Harmonic embedding and the corrector:

$$X_t = M_t + \chi(\omega, X_t),$$

where M_t is a martingale and $\chi(\omega, X_t)$ is a corrector.

• However, for

$$C_{x,y} = \frac{w_{x,y}}{|x - y|^{d+\alpha}}, \quad x, y \in \mathbb{Z}^d$$

with $\alpha \in (0,2)$,

$$\sum_{y\in\mathbb{Z}^d}|x-y|^2C_{x,y}=\infty.$$

• Harmonic embedding and the corrector:

$$X_t = M_t + \chi(\omega, X_t),$$

where M_t is a martingale and $\chi(\omega, X_t)$ is a corrector.

However, for

$$C_{x,y} = \frac{w_{x,y}}{|x - y|^{d+\alpha}}, \quad x, y \in \mathbb{Z}^d$$

with $\alpha \in (0,2)$,

$$\sum_{y\in\mathbb{Z}^d}|x-y|^2C_{x,y}=\infty.$$

• Harmonic embedding and the corrector:

$$X_t = M_t + \chi(\omega, X_t),$$

where M_t is a martingale and $\chi(\omega, X_t)$ is a corrector.

• However, for

$$C_{x,y} = \frac{\mathbf{w}_{x,y}}{|x - y|^{d + \alpha}}, \quad x, y \in \mathbb{Z}^d$$

with $\alpha \in (0,2)$,

$$\sum_{y\in\mathbb{Z}^d}|x-y|^2C_{x,y}=\infty.$$

- Discrete approximation of symmetric jump processes, see Chen-Kim-Kumagai ('13): Mosco convergence \implies convergence in L^2 -sense.
- Tightness + Hölder regularity for harmonic function (two key ingredients), see Chen-Croydon-Kumagai ('15).

Proposition (Tightness)

Under some assumptions, for any $\varepsilon \in (0, 1/2)$ and for some $\theta \in (0, 1)$, there is a constant $R_0 > 0$ such that for all $R > R_0$,

$$\sup_{x \in B(0,2R)} \mathbb{P}_x \left(\tau_{B(x,r)} \leqslant t \right) \leqslant C_1 \left(\frac{t}{r^{\alpha}} \right)^{1/2 - \varepsilon}, \quad \forall \ t \geqslant r^{\theta \alpha}, \ R^{\theta^2} \leqslant r \leqslant R.$$

- Discrete approximation of symmetric jump processes, see Chen-Kim-Kumagai ('13): Mosco convergence \implies convergence in L^2 -sense.
- Tightness + Hölder regularity for harmonic function (two key ingredients), see Chen-Croydon-Kumagai ('15).

Proposition (Tightness)

Under some assumptions, for any $\varepsilon \in (0, 1/2)$ and for some $\theta \in (0, 1)$, there is a constant $R_0 > 0$ such that for all $R > R_0$,

$$\sup_{x \in B(0,2R)} \mathbb{P}_x \left(\tau_{B(x,r)} \leqslant t \right) \leqslant C_1 \left(\frac{t}{r^{\alpha}} \right)^{1/2 - \varepsilon}, \quad \forall \ t \geqslant r^{\theta \alpha}, \ R^{\theta^2} \leqslant r \leqslant R.$$

- Discrete approximation of symmetric jump processes, see Chen-Kim-Kumagai ('13): Mosco convergence \Longrightarrow convergence in L^2 -sense.
- Tightness + Hölder regularity for harmonic function (two key ingredients), see Chen-Croydon-Kumagai ('15).

Proposition (Tightness)

Under some assumptions, for any $\varepsilon \in (0, 1/2)$ and for some $\theta \in (0, 1)$, there is a constant $R_0 > 0$ such that for all $R > R_0$,

$$\sup_{x\in B(0,2R)} \mathbb{P}_x \left(\tau_{B(x,r)} \leqslant t \right) \leqslant C_1 \left(\frac{t}{r^{\alpha}} \right)^{1/2-\varepsilon}, \quad \forall \ t \geqslant r^{\theta\alpha}, \ R^{\theta^2} \leqslant r \leqslant R.$$

- Discrete approximation of symmetric jump processes, see Chen-Kim-Kumagai ('13): Mosco convergence \implies convergence in L^2 -sense.
- Tightness + Hölder regularity for harmonic function (two key ingredients), see Chen-Croydon-Kumagai ('15).

Proposition (Tightness)

Under some assumptions, for any $\varepsilon \in (0, 1/2)$ and for some $\theta \in (0, 1)$, there is a constant $R_0 > 0$ such that for all $R > R_0$,

$$\sup_{x\in B(0,2R)} \mathbb{P}_x \left(\tau_{B(x,r)} \leqslant t \right) \leqslant C_1 \left(\frac{t}{r^{\alpha}} \right)^{1/2-\varepsilon}, \quad \forall \ t \geqslant r^{\theta\alpha}, \ R^{\theta^2} \leqslant r \leqslant R.$$

Proposition (Hölder regularity for parabolic functions)

Under some assumptions, there is a constant $R_0 > 0$ such that for all $R > R_0$, $x_0 \in B(0,R)$, $R^{\theta} \leq r \leq R$, $t_0 \geq 0$ and parabolic function q on $Q(t_0,x_0,2r)$,

$$|q(s,x)-q(t,y)|\leqslant C_1\|q\|_{\infty,r}\left(\frac{|t-s|^{1/\alpha}+|x-y|}{r}\right)^\beta,$$

holds for $(s, x), (t, y) \in Q(t_0, x_0, r)$ with $(C_0^{-1}|s - t|)^{1/\alpha} + |x - y| \ge r^{\theta}$, where

$$||q||_{\infty,r} = \sup_{(s,x)\in[t_0,t_0+C_0(2r)^{\alpha}]\times\mathbb{Z}^d} q(s,x),$$

and $C_1 > 0$ and $\beta \in (0, 1)$ are constants independent of R_0 , x_0 , t_0 , R, r, s, t, x and y.

• Local central limit theorem (Local CTL) holds, but elliptic Harnack inequalities and so parabolic Harnack inequalities do not hold.

28 / 29

Proposition (Hölder regularity for parabolic functions)

Under some assumptions, there is a constant $R_0 > 0$ such that for all $R > R_0$, $x_0 \in B(0,R)$, $R^{\theta} \leq r \leq R$, $t_0 \geq 0$ and parabolic function q on $Q(t_0,x_0,2r)$,

$$|q(s,x)-q(t,y)| \leqslant C_1 ||q||_{\infty,r} \left(\frac{|t-s|^{1/\alpha}+|x-y|}{r}\right)^{\beta},$$

holds for $(s, x), (t, y) \in Q(t_0, x_0, r)$ with $(C_0^{-1}|s - t|)^{1/\alpha} + |x - y| \ge r^{\theta}$, where

$$||q||_{\infty,r} = \sup_{(s,x)\in[t_0,t_0+C_0(2r)^{\alpha}]\times\mathbb{Z}^d} q(s,x),$$

and $C_1 > 0$ and $\beta \in (0, 1)$ are constants independent of R_0 , x_0 , t_0 , R, r, s, t, x and y.

 Local central limit theorem (Local CTL) holds, but elliptic Harnack inequalities and so parabolic Harnack inequalities do not hold.

Jian Wang (FJNU) Non-local Dirichlet forms October 22–27, 2017; Banff 28 / 29

Proposition (Hölder regularity for parabolic functions)

Under some assumptions, there is a constant $R_0 > 0$ such that for all $R > R_0$, $x_0 \in B(0,R)$, $R^{\theta} \leq r \leq R$, $t_0 \geq 0$ and parabolic function q on $Q(t_0,x_0,2r)$,

$$|q(s,x)-q(t,y)|\leqslant C_1\|q\|_{\infty,r}\left(\frac{|t-s|^{1/\alpha}+|x-y|}{r}\right)^\beta,$$

holds for $(s, x), (t, y) \in Q(t_0, x_0, r)$ with $(C_0^{-1}|s - t|)^{1/\alpha} + |x - y| \ge r^{\theta}$, where

$$||q||_{\infty,r} = \sup_{(s,x)\in[t_0,t_0+C_0(2r)^{\alpha}]\times\mathbb{Z}^d} q(s,x),$$

and $C_1 > 0$ and $\beta \in (0, 1)$ are constants independent of R_0 , x_0 , t_0 , R, r, s, t, x and y.

• Local central limit theorem (Local CTL) holds, but elliptic Harnack inequalities and so parabolic Harnack inequalities do not hold.

Thank you for your attention!