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Model

I d buffers, a single server.
I Renewal arrivals with mean interarrival 1/λr

i (finite 2nd moment) for
i ∈ {1, 2, . . . , d}, r a scaling parameter.

I For each i, IID job sizes, mean 1/µr
i (finite 2nd moment).

I Independence of stochastic primitives
I A policy is a rule dictating which job is served at each time.
I Heavy traffic asymptotics corresponds to

(i) a critical load condition,
(ii) diffusion scale.
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Heavy traffic

I Time acceleration

λr
i = λir2 + λ̂ir + o(r)
µr

i = µir2 + µ̂ir + o(r).

I Critical load
d∑

i=1

λi

µi
= 1.

I Queue length process Qr = (Qr
1 , . . . ,Qr

d), well defined once a policy is
specified.

I Normalization Q̂r = r−1Qr .
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Some well-understood policies
I Fixed priority: buffers ranked and server prioritizes accordingly.
I Serve the longest queue: server always selects the longest queue.

Motivation: minimize longest delays.
I (One also specifies preemptive or nonpreemptive service and how ties are

broken.)

Theorem (Whitt (1971), Reiman (1984))
i. Under fixed priority,

(Q̂r
1 , . . . , Q̂r

d)⇒ (0, . . . , 0,R),

ii. Under SLQ,
(Q̂r

1 , . . . , Q̂r
d)⇒ (R̃, . . . , R̃),

where R and R̃ are reflected Brownian motion on [0,∞) (with specific initial
condition, drift and diffusion coefficients).

I Laws of R and R̃ determined by first two moments of the primitives.
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Serve the shortest queue
I The server always selects the shortest queue. Rationale: minimize the

number of congested queueing, especially when uncertain about the
various traffic intensities.

I Markovian setting (Poisson arrivals, exponential job sizes).
I Tie breaking according to some {pi}i=1,...,d .
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removing the lambdas
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Walsh BM

I Proposed by Walsh (1978) as a diffusion process that performs BM (with
drift) on a (finite) union of rays emanating from the origin in R2, in
which the entrance law from the origin to the different rays follows a
given probability distribution.

I Early results: Rogers (1983), Baxter and Chacon (1984), Varopoulos
(1985), Salisbury (1986), Barlow, Pitman and Yor (1989).

I Skew BM: Barlow, Burdzy, Kaspi and Mandelbaum (2000), Burdzy and
Chen (2001), Burdzy and Kaspi (2004).

I Recent: Ichiba, Karatsaz, Prokaj and Yan (2015) SDE for Walsh
semimartingales.
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Walsh BM on S

I Denote S = {x ∈ Rd
+ : xi > 0 for at most one i}.

I Convenient to work with the definition of Barlow, Pitman and Yor (1989)
via semigroups. Let R be a (b, σ)-RBM and let q be a probability
distribution on {1, . . . , d}. Let ζ be the hitting time of R to zero. Then X
is a (b, σ, q)-WBM if for f ∈ C0(S) and x = rei0 ∈ S,

Ex [f (Xt)] = Er [f (Rtei0)1{t<ζ}] +
∑

i
qiE0[f (Rtei)1{t≥ζ}].

I Proved by BPY to be a strong Markov, Feller process.
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SSQ in heavy traffic

I Define

X̂ r =
( Q̂r

1
µ1
, . . . ,

Q̂r
d

µd

)
.

I Assume X̂ r(0) converges to a RV supported on S .

Theorem

As r →∞, X̂ r ⇒ X, u.o.c., where X is a Walsh BM on S. The modulus
R = 1 ·X is a RBM with specific (constant) drift and diffusion coefficients.

I (b, σ) are explicit whereas q implicit.
I q expected to depend on data beyond first and second moments.

SSQ and WBM 8 / 19



Literature on the SSQ
Has been proposed for packet scheduling on the internet.

I “Thanks to this simple policy, the scheduler prioritizes constant bit rate
flows associated with delay-sensitive applications such as voice and
audio/video streaming...; priority is thus implicitly given to smooth flows
over data traffic... sending packets in bursts.” Guillemin and Simonian,
Orange Labs (2014).

I Has been referred to as ‘implicit service differentiation’, ‘self prioritization
of audio and video traffic’.

I Proposed in two ways: queues correspond to different end users, the
scheduler is at the base station; queues correspond to different types of
data that a single user transmits/receives (scheduler is at the home
gateway).

I Experiments show that it performs well (Nasser, Al-Manthari and
Hassaneim (2005)).

Mathematical treatment: For d = 2 and exponential service times, expressions
for the Laplace transform of the stationary distribution (Guillemin and
Simonian (2012, 2013)).
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Idea of proof

I Convergence toward S : supt∈[0,T] dist(X̂ r
t ,S)⇒ 0.

– Reason: see picture.
I 1 ·X r ⇒ R.

– A standard result (for a general policy).
Remark: C -tightness of X̂ r follows. However the proof does not proceed by
analyzing subsequential limits. This is because strong Markovity is crucially
used. Strong Markovity of WBM cannot be used before establishing that the
limit is a WBM; we rely on that of the prelimit.
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Lemma

Denote

Si = {yei : y ∈ R+}
Sεi = {x ∈ Rd

+ : dist(x,Si) ≤ ε}
Sε = {x ∈ Rd

+ : dist(x,S) ≤ ε}

I R̂r(t) = 1 · X̂ r(t)
I τ r

ε = inf{t : R̂r(t) ≥ ε}

Lemma
There exists (qi)i=1,...,d, 1 · q = 1, such that

lim
ε↓0

lim sup
r→∞

|P0(X̂ r(τ r
ε ) ∈ Sεi )− qi | = 0.
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Proof of lemma

First, instead of a double limit it is easier to work with a single one.
I By a change of measure, modify (with little cost) the intensities

λr
i = λir2 + λ̂ir + o(r), µr

i = µir2 + µ̂ir + o(r)

into
λr

i = λir2, µr
i = µir2.

I Then Qr is a time acceleration of a single process Q̂, Qr = Q̂(r2·);
X̂i = Q̂i

µi
.

I Let τ r = inf{t : 1 · X̂(t) ≥ r} and attempt to prove that

qr
i := P0(X̂(τ r) ∈ Sε0r

i )

has a limit.
I It is a Cauchy sequence argument.
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A toy model

Consider a Markov chain on 2d + 1 states. Bi are absorbing.

Then
max

i
|p(Ai , 0)− p(A1, 0)|

controls
max

i
|p(0,Ai)− P0(getting absorbed at Bi)|.
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I Back to the process X̂ , consider this analogous picture

I Recall qr
i = P0(X̂(τ r) ∈ Sε0r

i ). We aim at showing it is Cauchy via

∃δ ∈ (0, 1) s.t. |qr
i − qm

i | ≤ δk for r ∈ [2k , 2k+1], m = 2k+2, ∀k,

since this would imply, for general r < m,

|qr
i − qm

i | ≤
∑

log2 r≤j≤log2 m
2δj ≤ cδlog2 r .
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I Now make the sleeves r1−c thin, and use the fact that 1 · X̂ is a
martingale to get

∀x ∈ B(rei , r1−c),
∣∣∣Px(ζ < τm)− m − r

m

∣∣∣ ≤ r−c.

In view of the toy model this should give estimate that makes |qr
i − qm

i |
small. However, we need to improve the sleeve estimate from o(1) to r−c,
and to obtain similar estimates for the event that the walk switches
sleeves without passing through the origin.

I On what time interval are the estimates required? ζ and τm (starting in
the ball) do not occur within [0, r2] w.h.p., but within [0, r2 log r ].

I Hence the estimate we really need is

Px(‖dist(X̂ ,S)‖r2 log r > r−a) < r−c, if dist(x,S) < γr−a.

I This is achieved by working with a suitable Lyapunov function. Measures
distance from S and has the intuitive meaning of work present in all but
longest queue:

F(x) =
∑

i
xi −max

i
xi .
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Proof of theorem
One needs to show for xr → x ∈ S , uniformly for x in compacts,

Exr f (X̂ r(t))→ Ex f (X(t)).
Focus on xr = x = 0. Fix ε > 0. Let ζr

0 = 0 and for m = 0, 1, 2, . . .,
τ r

m = inf{t > ζr
m : 1 ·X r(t) ≥ ε},

ζr
m+1 = inf{t > τ r

m : 1 ·X r(t) = 0}.

E0f (X̂ r(t)) ∼
∑

i

∑
m

E0[f (X r(t))1{τ r
m≤t<ζr

m+1}1{Xr (τ r
m)∈Sr−c

i }]

∼
∑

i

∑
m

E0[f (1 ·X r(t) ei)1{τ r
m≤t<ζr

m+1}1{Xr (τ r
m)∈Sr−c

i }]

∼∗
∑

i

∑
m

E0[f (1 ·X r(t) ei)1{τ r
m≤t<ζr

m+1}]qi

∼
∑

i
E0[f (R(t)ei)]qi

(*) Lemma + another lemma on asymptotic independence, for fixed m, of
X r(τ r

m) and τ r
m.
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Two main open questions
I Dependence of the angular distribution q on the data.
I The queueing model is natural to consider for general job size

distributions. How to treat it beyond the Markov case?
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q1 as a function of λ1, fixed µ’s
µ1 = 20, µ2 = 20, λ1 = 5...15, λ2 = µ2 − λ1, p1 = .5, p2 = .5

q1 as a function of µ1, fixed λ’s
λ1 = 10, λ2 = 10, µ1 = 15...30, µ2 = 1/(1/λ1 − 1/µ1), p1 = .5, p2 = .5
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q1 as a function of λ1, fixed λ1/µ1, λ2, µ2
µ2 = 20, λ2 = 10, λ1 = 3...25, µ1 = 2λ1, p1 = .5, p2 = .5

q1 as a function of p1, fixed λ’s and µ’s
λ1 = 10, λ2 = 10, µ1 = 20, µ2 = 20, p1 = 0...1, p2 = 1 − p1

SSQ and WBM 19 / 19


