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Single Cell sequencing 
• Standard mRNA-Seq on 

bulk populations 

Owens (2012) “Genomics: The single life”  Nature News 



Single Cell sequencing 
• Standard mRNA-Seq on 

bulk populations 
• Single cell: allows to see 

diversity of individual 
cells 

Owens (2012) “Genomics: The single life”  Nature News 



Experimental process 
•  Isolate cell 

•  Micropipette 
•  FACS : Fluidigm C1 
≤96 cells per run*,  
good: 60-70% capture rate 

•  Droplet 

 

•  Library Prep  
•  Amplification: small input 

material, high amplification 

• Sequencing 
•  Low seq. depth: e.g. 96 per 

lane (1M reads) 

Cell capture 

Library Prep 
(including 
barcodes) 

Sequencing 



S1 cortex in mice  
(NIH BRAIN Initiative Cell Census 
Consortium) 
 
•  FACS sorting of the 

S1 cortex (Layer 
4/5/6) 

Layer 5 cells (Glial 
contaminents removed) 

develop a rapid, high-throughput pipeline for generating multigenic mouse knock-in reporter strains using the 
latest advances in Cas9/CRISPR-mediated genome engineering. We expect to provide preliminary insights 
into the complexity of the neuronal population in the mammalian cortex; an approach that will be readily 
scalable to the classification of all neuronal and non-neuronal cell types in the brain; and a means of rapidly 
generating multigenic knock-in mouse reporter strains to facilitate functional analysis of neural circuits. 

APPROACH 
Rationale. The goal of this proposed pilot demonstration project is to establish a general method for identifying 
and classifying the diversity of neuronal subtypes based on the transcriptome “fingerprints” of individual 
neurons, with the ultimate goal of creating a compendium of all cell types in the brain. Our foundational 
premise is that cellular identity is ultimately defined by the genes expressed by the cell. This premise begins to 
break down at its limit, however, for example when a cell adopts different states that lead to alterations in gene 
expression. Indeed, analysis of single cells has revealed the occurrence of transcriptional “bursts” that can 
alter the cell’s gene expression landscape in dramatic ways, if only for short periods of time (31, 32). It has 
been proposed that the basic identity of a neuron is defined by the genes it expresses, with state-specific 
differences manifesting as more subtle alterations on top of the cell’s baseline gene expression profile (33). 
Thus, a challenge is to understand how variations in gene expression can be used to define cellular identity, 
knowing that gene expression is not entirely stable or constant within a single cell. 
    Here we propose a suite of high-throughput genomics and bioinformatics techniques to characterize the 
transcriptional profiles of large numbers of individual neurons, and to use this information to classify neurons 
based on the genes that they express (Figure 1). The resulting classification scheme will be validated initially 
by RNA in situ hybridizations, followed by additional approaches to verify that the resulting cell classifications 
reflect functional properties such as anatomical location, connectivity and intrinsic physiological properties. 
These latter validation techniques will rely upon development of a high-throughput genome editing pipeline that 
will support the rapid generation of knock-in reporter mouse strains expressing multiple fluorescent protein 
reporters (“XFPs”) under the control of 3 or more genes that define a given neuronal subtype. We expect that 
these technology developments together will provide a means to obtain a complete characterization of cellular 
diversity in the mammalian brain. 
Layer 5 pyramidal cells of S1 cortex as a model for classifying neurons on a large scale. Given the 
enormous complexity of the mammalian nervous system – in particular the cerebral cortex, which is thought to 
comprise hundreds if not thousands of 
distinct neuronal subtypes – it would be 
impractical to attempt to generate a 
compendium – an encyclopedia of sorts – 
of cell types by analyzing the entire brain 
at once. Our approach instead is to 
develop a method that can (1) capture the 
biological diversity of cell types within a 
more circumscribed population and (2) 
subsequently be scaled up to elucidate the 
cellular complexity of the entire brain, 
volume by volume. With these 
considerations in mind, we have chosen to 
focus our attention on pyramidal neurons 
found in layer 5 (L5) of primary 
somatosensory (S1) cortex. Because 
these cells clearly comprise multiple 
classes based on long-range projection 
target, cellular morphology, sublamination, 
and intrinsic physiology (34), they are an 
ideal test population in which to identify 
gene expression patterns that mark unique 
neuronal subtypes. Moreover, recent work 
has identified pairwise combinations of 
genes that mark some of these broader 
classes (35).  By developing our approach 
on L5 pyramidal cells, we aim to (1) 
validate the known cell classes in S1 
cortex; (2) identify additional pyramidal cell 

 
Figure 1. Schematic of cortical cell classification strategy. 
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Olfactory Epithelium (OE) 

Sustentacular cells 

Mature olfactory neurons 

Immature olfactory neurons 

Globose basal cells 

Horizontal basal cells 

Olfactory ensheathing glia 

Bowman’s gland 

Sustentacular cells 

Mature olfactory neurons 

Immature olfactory neurons 

Globose basal cells 

Horizontal basal cells 

Olfactory ensheathing glia 

Bowman’s gland 
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Quick snapshot of the data 

Data Set Olefactory Brain 

# mice 51 41 

# C1 Batches 61 40 

# Illumina Lanes 19 7 

# cells 2,627* 1,249 

# cells pass QC 2,190 1,042 

# Sequenced Reads 4,001 Million 1,500 Million 

* Many conditions: in this talk, only 904 total (687 after sequencing) 



Overview 
• SCONE 

•  Data specific choice of normalization strategy 
•  Via comprehensive comparison in every dataset 
•  Metrics to rank normalized data 

• RSEC 
•  Robust clustering strategy to find heterogeneity in scSeq data 
•  Subsampling and sequential clustering, merging of clusters, … 
•  Part of clusterExperiment package for common clustering 

tasks (e.g. pairwise DE, plotting with clustering information) 

• Slingshot 
•  Estimation of developmental lineages 
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•  Estimation of developmental lineages 



Experiments (two): 
• Capture descendant cells at several time points after 

regeneration 
•  Destroy all but HBC and watch them regenerate: 145 cells (of 175) 
•  Lineage tracing after inducing HBC: 542 cells (of 729) 

• Sequence the individual cells to determine what is changing 
• Goal: characterize the differentiation process and at what 

point cell fate is chosen 



Find genes related to differentiation 
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But observed time is not differential state 

t = 0 t = 1 t = 2 t = 3 

HBC ORN 
Differentiation Order 

Time 



Better representation if order cells by 
differentiation state 
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Better representation if order cells by 
differentiation state 
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Problem more acute when multiple 
endpoints 

HBC 

Sus 

ORN 
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HBC SUS 
Developmental Order 
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Many Strategies for One lineage 
• Assume distance gives differentiation order, at some level 
•  Find a ‘path’ (lineage) through space of gene expression 

data 
• Order individual cells on the path 

•  E.g. orthogonal projection 

• Many “details” hard-coded in, make comparisons difficult 
•  Dimensionality of  space (e.g. 2 dimensions)  
•  How find low dimensions (ICA / PCA / Laplacian Embedding) 



Path Choices 
• MST through individual cells, take longest path (Monocle) 

‘Project’ onto path via where branch off path 
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Path Choices 
• MST through individual cells, take longest path (Monocle) 
• MST on Clusters, orthogonal projection (Waterfall / TSCAN) 
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Path Choices 
• MST through individual cells, take longest path (Monocle) 
• MST on Clusters, orthogonal projection (Waterfall / TSCAN) 
• Principal Curves, orthogonal projection (Embedder) 
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Monocle not robust 
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Principal Curves Not Reliant on Clustering 
• MST on clusters can be sensitive to choice of clusters 
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Slingshot: Multiple Lineages 
•  MST useful for broad shapes, finding branching 

Clustering often uses more dimensions – more information 
•  Principal curves more robust estimates of ordering 

•  Slingshot 
 
à Use MST for assigning clusters of cells to lineages 
à Principal curves within lineages to give ordering 

•  Additionally 
à allow for supervision (constrained MST) 
à simulataneous principle curve fitting for overlapping 
branches 
à covariance based distance for MST to capture shape of 
cluster 
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Importance of Constrained MST 

PCA of Gene Expression, with clusters 
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Constraint keeps these lineages separate 
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Slingshot: Multiple Lineages 
•  MST useful for broad shapes, finding branching 

Clustering often uses more dimensions – more information 
•  Principal curves more robust estimates of ordering 

•  Slingshot 
 
à Use MST for assigning clusters of cells to lineages 
à Principal curves within lineages to give ordering 

•  Additionally 
à allow for supervision (constrained MST) 
à simulataneous principal curve fitting for overlapping 
branches 
à covariance based distance for MST to capture shape of 
cluster 



Shrinkage 
• Principal curves à multiple pseudotimes for same cells in 

multiple lineages 
• Shrink curves to average based on the density of cells 

shared across lineages 



Shrinkage 
• Principal curves à multiple pseudotimes for same cells in 

multiple lineages 
• Shrink curves to average based on the density of cells 

shared across lineages 
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Retain robustness of Principal Curves  
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Slingshot: Multiple Lineages 
•  MST useful for broad shapes, finding branching 

Clustering often uses more dimensions – more information 
•  Principal curves more robust estimates of ordering 

•  Slingshot 
 
à Use MST for assigning clusters of cells to lineages 
à Principal curves within lineages to give ordering 

•  Additionally 
à allow for supervision (constrained MST) 
à simulataneous principal curve fitting for overlapping 
branches 
à covariance based distance for MST to capture shape of 
cluster 



Compare to Other Methods 
Monocle 

• Must specify  
# lineages 

Wishbone 
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• Only two lineages 
• Built-in Dimensionality 

Reduction 

Slingshot: Developmental Lineage Inference with Single-Cell Data 
Kelly Street1, Davide Risso2, Russell B. Fletcher3, Diya Das3, Nir Yosef4, Elizabeth Purdom2, Sandrine Dudoit1,2

1Division of Biostatistics, 2Department of Statistics, 3Department of Molecular and Cell Biology, 4Department of Electrical Engineering & Computer Science
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(Top) Schematic of known differentiation patterns in the mouse olfactory epithelium.
(Middle) Output from applying Slingshot to the full olfactory epithelium dataset, with 
clusters of cells colored to reflect the schematic. Manual supervision identified the 
HBC cluster as the starting point and the sustentacular cluster as an endpoint.
(Bottom) Output from applying Monocle to the same dataset. Manual supervision 
set the beginning of pseudotime closer the HBC cluster and specified that results 
should contain three lineages.

Path Branching

University of California, Berkeley

A broad array of single-cell methods have recently afforded researchers a 
high-resolution view of cellular processes. One common target for these 
studies has been stem cells and their descendants, in hopes of gaining 
insight into cell fate decisions and transcriptional progression. Here we 
present Slingshot, a uniquely flexible and robust tool for inferring 
developmental lineages and ordering samples to reflect continuous 
processes. Using clustered single-cell data, it maps relationships 
between cell types, providing stability and reducing the complexity of the 
inferred lineages. This process also allows for researchers to incorporate 
prior biological knowledge. The map is then used to assign individual 
cells to developmental lineages, which are represented by smooth curves 
in a low-dimensional space using a novel algorithm. These curves 
provide discerning power not found in methods based on piecewise linear 
trajectories while also adding stability over the wide range of possible 
dimensionality reduction and clustering techniques.

References 

Available Methods 

Due to the high levels of variability found in many single-cell data types, 
stability is a key concern for any analysis pipeline. In addition to biological 
and technical effects, downstream analyses such as lineage inference must 
be robust to the effects of upstream computational choices such as 
normalization and clustering methods. In the figures above, we examine the 
stability of a few common ordering methods using a portion of the dataset 
from Trapnell, et al. (2014) believed to represent a single lineage. We find 
the Monocle procedure to be highly variable in ordering subsets of the data, 
whereas a cluster-based MST (similar to Waterfall and TSCAN) or principal 
curve (as in Embeddr) produce much more stable orderings. However, 
unlike the other two methods, a principal curve cannot be used to detect 
branching events. We therefore developed a new method called 
simultaneous principal curves which Slingshot uses in conjunction with a 
cluster-based MST to robustly order cells along branching lineages.

K−means, MST Project

Original Pseudotime

Bo
ot

st
ra

p 
Ps

eu
do

tim
e

X[,1]

X[
,2
]

●

●
●

●

Monocle

Original Pseudotime

Bo
ot

st
ra

p 
Ps

eu
do

tim
e

Principal Curve

Original Pseudotime

Bo
ot

st
ra

p 
Ps

eu
do

tim
e

X[,1]

X[
,2
]

X[,1]

X[
,2
]

(Top row) The main path identified by three methods on the full data set. Monocle 
identifies the longest path through the MST constructed on all cells (red). The Waterfall 
and TSCAN methods cluster cells and connect cluster centers with an MST (purple, 
clustering performed by k-means with K=4). A principal curve is a non-linear method of 
constructing a line through the center of the data, used by Embeddr (green).
(Bottom row) The results from running each method on 50 bootstrap subsamples of 
the data (y-axis) plotted against the original ordering on the full data (x-axis).
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Cluster MST Slingshot 
We demonstrate Slingshot’s 
robustness to the choice of clustering 
method using a toy dataset with three 
endpoints.
(Left) The Cluster MST approach with 
K = 8, 6, and 4, respectively. For low 
values of K, we are unable to fully 
characterize the underlying structure, 
but with larger numbers of clusters we 
see a lot of variability and quickly run 
into problems of overfitting.
(Right) Results of running Slingshot on 
the same data with the same cluster 
assignments. Starting from the same 
cluster-based MST, Slingshot’s 
simultaneous principal curves smooth 
out the variability caused by larger 
numbers of clusters. The final curves 
are almost identical over the different 
choices of K.
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In many cases, single-cell data may be too noisy for a purely 
unsupervised approach. This is why Slingshot allows for the incorporation 
of prior biological knowledge through supervision of the cluster-based 
MST. Clusters representing known terminal cell states can be marked as 
endpoints and will only be assigned one connection. This way, novel 
endpoints and bifurcation events can still be discovered without 
contradicting established results. Below, we use the full olfactory 
epithelium dataset to compare Slingshot and Monocle. Rather than 
specifying endpoint clusters, Monocle takes as an argument the number 
of lineages to be returned. With the same amount of supervision, 
Slingshot manages to capture the known biological structure, whereas 
Monocle appears to contradict it.

We have found that Slingshot provides reasonable results on a wide 
range of datasets. Some of this adaptability comes from not specifying 
particular dimensionality reduction or clustering methods. While we 
typically use PCA and either k-means or Resampling-based Sequential 
Ensemble Clustering (RSEC), Slingshot is designed to provide stable 
results over a range of possibilities. Below, we compare Slingshot to 
Wishbone on a subset of the data from Fletcher, et al. (unpublished), 
believed to represent two bifurcating lineages.
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1Requires a pre-specified number of branches
2Limited to one branching event (two lineages)

(Top) Schematic of known 
differentiation patterns in the 
mouse olfactory epithelium.
(Middle 1) Results of 
applying Slingshot with PCA 
and RSEC.
(Middle 2) Results of 
applying Wishbone.
(Bottom) Results of applying 
Wishbone with PCA rather 
than diffusion maps for 
dimensionality reduction.
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Concluding Remarks 
• Robust and flexible method for determining lineage of 

cells 
• However, … 
• Very high expectations à Many assumptions 
• Processing and dimensionality reduction are also critical 

components 



Functional Genomics Lab 
  Justin Choi 
CRL Flow Cytometry Core 
  Hector Nolla 

John Ngai 
  David Stafford 
  Jasper Visser 
  Russell Fletcher 
  Diya Das 
  Levi Gadye 
  Mike Sanchez 
  Ariane Baudhuin 

Sandrine Dudoit 
Elizabeth Purdom 
  Davide Risso 
  Kelly Street 
Nir Yosef 
  Allon Wagner 
  Michael Cole 

Hillel Adesnik 
  David Taylor 
  Alex Naka 

NIH BRAIN Initiative Cell Census Consortium 
National Institute on Deafness and Other Communication Disorders 

National Institute on Aging 
National Human Genome Resource Institute 
California Institute for Regenerative Medicine 

RSEC available as part of clusterExperiment package on bioconductor  
SCONE available on bioconductor (dev) 
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Effect of dimensionality reduction is big 
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Limitations: Noisy data 

Brennecke et al Nature Methods (2013) 

Dilution of Bulk RNA  Because of low starting input 
(picograms), large amounts of 
amplification, other technical problems 

Brain, Layer IV  
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