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Single Cell sequencing

- Standard mRNA-Seq on
bulk populations

ONE GENOME FROM MANY

Sequencing the genomes of single cells is similar to sequencing
thase from multiple cells — but errors are more likely,

» Standard genome sequencing

A sample contalning thousands to DNA is extracted from all the nuclei.

milions of cells is isolated.

DNA & broken into fragments
and then sequenced



Single Cell sequencing

- Standard mRNA-Seq on
bulk populations

- Single cell: allows to see

diversity of individual
cells

ONE GENOME FROM MANY

Sequencing the genomes of single cells is similar to sequencing
thosa from multiple cells — but errors are more likely,

» Standard genome sequencing

DNA is extracted from all the nuclei. DNA & broken into fragments

and then sequenced

A sample contalning thousands to
milions of cells is isolated.

» Single-cell sequencing

&:) A k.

DNA amplification

The DNA is extracted and ampidied, Amplified DNA 5 sequenced,
dunng which errors can creep in

A single cell is difficult to isolate, but
it can be done mechanically or with
an sutomated cell sorter,

Owens (2012) “Genomics: The single life” Nature News



Experimental process

- Isolate cell - Library Prep
- Micropipette - Amplification: small input
- FACS : Fluidigm C, material, high amplification
<96 cells per run*, - Sequencing
good: 60-70% capture rate . Low seq. depth: e.g. 96 per
» Droplet lane (1M reads)

Library Prep
i (including Sequencing
\ barcodg\s)
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ORN. Immature olfactory neurons
GBC Globose basal cells

HBC Horizontal basal cells

BG Bowman'’s gland



Quick snapshot of the data

Data Set

# mice

# C1 Batches

# lllumina Lanes
# cells

# cells pass QC

# Sequenced Reads

Olefactory

91

61

19
2,627*
2,190

4,001 Million

Brain
41

40

7
1,249
1,042

1,500 Million

* Many conditions: in this talk, only 904 total (687 after sequencing)



Overview

- SCONE
- Data specific choice of normalization strategy
- Via comprehensive comparison in every dataset
- Metrics to rank normalized data

- RSEC
- Robust clustering strategy to find heterogeneity in scSeq data
- Subsampling and sequential clustering, merging of clusters, ...
- Part of clusterExperiment package for common clustering
tasks (e.g. pairwise DE, plotting with clustering information)
- Slingshot

- Estimation of developmental lineages
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Experiments (two):

- Capture descendant cells at several time points after
regeneration

- Destroy all but HBC and watch them regenerate: 145 cells (of 175)
- Lineage tracing after inducing HBC: 542 cells (of 729)
- Sequence the individual cells to determine what is changing

- Goal: characterize the differentiation process and at what
point cell fate is chosen




Find genes related to differentiation
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But observed time is not differential state
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Better representation if order cells by
differentiation state
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Better representation if order cells by
differentiation state

Gene Expression
@

Differentiation Order
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Problem more acute when multiple
endpoints
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Gene Expression
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Many Strategies for One lineage

- Assume distance gives differentiation order, at some level

- Find a ‘path’ (lineage) through space of gene expression
data

- Order individual cells on the path
- E.g. orthogonal projection

- Many “details” hard-coded in, make comparisons difficult
- Dimensionality of space (e.g. 2 dimensions)
- How find low dimensions (ICA / PCA / Laplacian Embedding)



D
Path Choices

- MST through individual cells, take longest path (Monocle)
‘Project’ onto path via where branch off path
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D
Path Choices

- MST through individual cells, take longest path (Monocle)
- MST on Clusters, orthogonal projection (Waterfall / TSCAN)
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- MST through individual cells, take longest path (Monocle)
- MST on Clusters, orthogonal projection (\Waterfall
- Principal Curves, orthogonal projection (Embedder)

Path Choices
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Monocle not robust
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Monocle not robust

8.09.&) % ° °°.
o Q ®e )
© Q ‘O.. ....O .O.O %.
© e e °e
'od.o [
o oV E%nct °
«w " OIFS oo
o & o,
o 2o C%Q O,
0, o) OCe
00008 ¢ o _ ©
< &b
0% Oh
o7 Lo o o bien
® 48h
o Oog OGG © ° 9sh§3:§

(Jittered)




IC1

C1

sawpopnasd ajdwesqnsg

.

Principal Curves More Stable

C1

eleq |Ind

so|dwesqns 05

Original pseudotime Original pseudotime

Original pseudotime



Principal Curves Not Reliant on Clustering

- MST on clusters can be sensitive to choice of clusters

MST on Clusters Principal curves

Monocle Data



B
Slingshot: Multiple Lineages

- MST useful for broad shapes, finding branching
Clustering often uses more dimensions — more information

- Principal curves more robust estimates of ordering

- Slingshot

- Use MST for assigning clusters of cells to lineages
—> Principal curves within lineages to give ordering



B
Slingshot: Multiple Lineages

- MST useful for broad shapes, finding branching
Clustering often uses more dimensions — more information

- Principal curves more robust estimates of ordering

- Slingshot

- Use MST for assigning clusters of cells to lineages
—> Principal curves within lineages to give ordering

- Additionally
—> allow for supervision (constrained MST)



Importance of Constrained MST

- Huge assumption
® HBC |~ ¥ distance in gene
AHBC ’\r,;-..- _ expression = order
o QBC \ ‘,{' 4:‘ x £ - o Qlustering_gives |
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PCA of Gene Expression, with clusters



Constraint keeps these lineages separate

With Constraints

Without Constraints

® HBC
@ AHBC
® GBC
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® mORN
® mSus
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B
Slingshot: Multiple Lineages

- MST useful for broad shapes, finding branching
Clustering often uses more dimensions — more information

- Principal curves more robust estimates of ordering

- Slingshot

- Use MST for assigning clusters of cells to lineages
—> Principal curves within lineages to give ordering

- Additionally
—> allow for supervision (constrained MST)
-> simulataneous principal curve fitting for overlapping
branches



Shrinkage

- Principal curves - multiple pseudotimes for same cells in
multiple lineages

- Shrink curves to average based on the density of cells
shared across lineages




Shrinkage

- Principal curves - multiple pseudotimes for same cells in
multiple lineages
- Shrink curves to average based on the density of cells

shared across lineages
With Shrinkage




Retain robustness of Principal Curves

MST on Clusters MST on Clusters + Simultaneous Principal Curves

k = 3-14 k = 3-14



Slingshot: Multiple Lineages

MST useful for broad shapes, finding branching
Clustering often uses more dimensions — more information

Principal curves more robust estimates of ordering

Slingshot

- Use MST for assigning clusters of cells to lineages
—> Principal curves within lineages to give ordering

Additionally

—> allow for supervision (constrained MST)

—> simulataneous principal curve fitting for overlapping
branches

- covariance based distance for MST to capture shape of
cluster
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Compare to Other Methods

Monocle Wishbone
- Must specify - Only two lineages
# lineages - Built-in Dimensionality
Reduction

® mSus Biology Biology HBC'_<:2:::S—0 OSN

HBco—<_ oMV "
QGBC - O omapese—
® mOSN Slingshot —
—a @ cEeame Slingshot eme— —
— a-e—a- WiShDONE | o e
Wishbone | ~ i —

— Monocle (with PCA) - T @O TEh>esE €8 ——
< EOa-
S L D B




Krtig

o
* oo o o008 00 it 00 AN 3
TN N R IKL B
20 [ ) S
..‘..Q o %@ 0" X
. T
SoaPf o o

I
uoissa.idx3y audn)




Olfactory Epithelium
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Concluding Remarks

- Robust and flexible method for determining lineage of
cells

- However, ...
- Very high expectations - Many assumptions

- Processing and dimensionality reduction are also critical
components
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Effect of dimensionality reduction is big
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Limitations: Noisy data

. Dilution Obe:,I_k RNA Because of low starting input

Brennecke et al Nature Methods (2013)
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