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Ergodic dynamical system (M,�t , µ) observed through a vector-valued
function F : M 7! Rn

Given time-ordered observations {x
0

, . . . , xN�1

} with xi = F (ai ) and
n � 1, we seek to compute approximate Koopman eigenfunctions with
high smoothness



Kernel methods for Koopman eigenfunctions (Giannakis 2015, Giannakis et al. 2015)

We formulate a Galerkin method for the Koopman eigenvalue problem in
a data-driven basis of L2(M, µ) with a well-defined notion of smoothness
(Dirichlet energy)

• Takens delay embeddings
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• Variable-bandwidth kernel
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• Di↵usion maps normalization
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K✏,s(ai , aj)P
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Galerkin method for the Koopman eigenvalue problem

• We eliminate rough eigenfunctions by solving the eigenvalue problem for
L✏ = v + ✏�

Continuous problem. Find z 2 H1(M, h) and � 2 C s.t.

h , v(z)i+ ✏hgradh  , gradh zi = �h , zi, 8 2 H1(M, h)

Discrete approximation
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• The action of v on functions is approximated via finite di↵erences in
time

• By construction of the {'i} basis, hgradh 'i , gradh 'ji = �ij , and the
scheme remains well-conditioned at large l



Traveling waves in synthetic dataset
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Di↵usion maps and Koopman eigenfunctions

• In systems with pure point spectra of the Koopman operators,
�̄f = lims!1�s f is well defined, and [�̄, v ] = 0 (Giannakis 2015)

• Eigenfunctions of �̄ provide an e�cient approximation space for
eigenfunctions of v
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Eigenfunctions recovered by di↵usion maps with delays embeddings have
timescale separation (Giannakis & Majda 2012, Berry et al. 2013)

Interannual and decadal patterns of Indo-Pacific SST recovered via
Nonlinear Laplacian Spectral Analysis (S. & Giannakis 2016; Giannakis & S.

2016)



Removing i.i.d. measurement noise

For data x̃i = xi + ⇠i , xi = F (ai ), corrupted by i.i.d. noise ⇠i ,

Ekx̃i � x̃jk2 = kxi � xjk2 + 2R2, R2 = var ⇠i

Performing delay-coordinate maps, and taking the limit s ! 1,

• kX̃i � X̃jk2
a.s.��! kXi � Xjk2 + 2R2

• Because ḡ is flat, the bias term in the pairwise distance produces a
multiplicative bias in the kernel which cancels to O(✏2) in the di↵usion
maps normalization
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• Since
R
M
P✏(ai , b)f (b) dµ = f (ai )� ✏�ḡ f (ai ) +O(✏2), this bias does not

a↵ect the convergence of the eigenfunctions of P✏ to the eigenfunctions
�k of �ḡ as ✏ ! 0, and the denoised �k can be employed in the Galerkin
scheme for Koopman eigenfunctions



Indo-Pacific SST datasets

FIG. 2. Power spectral densities (a, d, g), 100-year portions of the eigenfunction time series (b, e, h), and

spatial composites (c, f, i) for NLSA modes �7 (a–c), �9 (d–f), and �11 (g–i) extracted from the CCSM4 control

integration. The power spectral densities and composites were computed in the same manner as in Fig. 1.

The modes shown here are the first modes in the families {�7,�8}, {�9,�10}, and {�11,�12} representing the

fundamental component of ENSO and the ENSO-A1 and ENSO-A2 combination modes, respectively. The

second mode in each family is in quadrature with the first, and therefore has analogous spatial and temporal

patterns. Notice the strong activity exhibited by �9 and �11 in the IOD region in panels (f, g).
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FIG. 5. Power spectral densities (a, d), 300-year portions of the eigenfunction time series (b, e), and spatial

composites (c, f) for NLSA modes �13 (a–c) and �14 (d–f) extracted from the CCSM4 control integration.

Modes �13 and �14 correspond to the WPMM and the IPO, respectively. The power spectral densities in (a, d)

were computed in the same manner as those in Fig. 1. The composites in (f, i) were created by averaging the

reconstructed data over periods for which �i(t) > max�i � stdev�i. For intermittent time series such as �13 and

�14 with max�i � stdev�i, the composites in (f, i) emphasize stronger events than composites created through

the requirement �i(t) > stdev�i.
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CCSM4 control
1300 y monthly-averaged SST, 1� (nominal), preindustrial forcings

GFDL CM3 control
800 y monthly-averaged SST, 1� (nominal), preindustrial forcings

HadISST
Industrial era (1870–2013) SST, 1�

Satellite era (1979–2013) SST, 1�

• No bandpass filtering or detrending performed

• Results checked for robustness against embedding windows 4–30 y,
changes in spatial domain, addition of observational noise



Indo-Pacific SST modes recovered by NLSA

Modes from CCSM4 and CM3:

1 Annual cycle and its harmonics

2 ENSO and ENSO combination modes (McGregor et al. 2012; Stuecker et al.

2013; Ren et al. 2016)

3 Tropospheric biennial oscillation (TBO) (Meehl 1987) and associated
combination modes

4 Interdecadal Pacific oscillation (IPO) (Power et al. 1999)

5 West Pacific multidecadal mode (WPMM)

Modes from HadISST:

• Annual, ENSO, and TBO modes robustly recovered

• Evidence for IPO and WPMM (though of degraded quality)



ENSO and ENSO combination modes

• ENSO emerges as an oscillatory pair of eigenfunctions with a ⌫ENSO ⇡ 4
y�1 frequency peak and a decadal amplitude envelope

• Combination modes predicted from quadratic nonlinearities in the
coupled atmosphere-ocean system (McGregor et al. 2012; Stuecker et al. 2013)

are recovered at the theoretically expected frequencies ⌫ENSO ± 1 y�1 and
degeneracies

• The ENSO and ENSO combination modes together capture the
phase-locking of ENSO to the annual cycle



ENSO and ENSO combination modes
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• Reconstructed surface winds exhibit anomalous westerlies during the
development of El Niño events in boreal winter, and a southward shift
preceding El Niño decay in boreal spring (Vecchi 2006; Stuecker et al. 2013)

• Surface circulation consistent with Indian Ocean SST dipole (Saji et al.

1999; Webster et al. 1999)



Decadal modes (WPMM & IPO)

• West Pacific multidecadal mode (top) characterized by multidecadal
variability and a prominent cluster of SST anomalies in the western
equatorial Pacific

• Some similarities with 2nd EOF of decadal Pacific SST (Timmermann 2003;

Ogata et al. 2013) and SST residuals (Karnauskas et al. 2009; Solomon &

Newman 2012; Seager et al. 2015)

• Cold (warm) WPMM phases correlate with enhanced (suppressed) ENSO
activity (corr. coe↵. 0.63 in CCSM4)

FIG. 7. Temporal pattern of the WPMM (blue lines) and amplitude envelopes (red lines) of (a) the fundamental

ENSO modes, (b) the fundamental TBO modes, and (c) the IPO mode recovered from CCSM4 data via NLSA.

The amplitude envelopes were computed via the Hilbert transform of the corresponding pairs of modes. The

correlation coefficients r between the plotted time series in each panel and the corresponding p-values are (a)

r = �0.63, p ⇡ 0, (b) r = �0.52, p ⇡ 0, (c) r = 0.11, p = 0.2. Here, p-values were computed using a t-test with

(1300 y)� �ENSO � 2 = 323 degrees of freedom, representing the number of “independent” ENSO events at a

frequency �ENSO = 0.25 y�1 over the 1300 y CCSM4 dataset. The notation p ⇡ 0 means that p is numerically

equal to zero for this number of degrees of freedom.
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West Pacific multidecadal mode – climate impacts

105 155

a)

d)c)

b)

• Cold WPMM phase is characterized by anomalous westerlies in the
central Pacific and anomalously flat zonal thermocline profile; such
conditions are known to correlate with enhanced ENSO activity (Kirtman

& Schopf 1998; Kleeman et al. 1999; Fedorov & Philander 2000)

• Circulation and SST patterns are consistent with strong impacts on
Australian decadal precipitation (corr. coe↵. 0.62 in CCSM4)
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Analysis of organized tropical convection

to times after/before the peak in convection (negative Tb
anomaly) at the base point. Features discussed here are all
locally statistically significant at better than the 95% level,
after taking into account temporal autocorrelation, and
every pattern shown is field significant according to the
criteria outlined by Livezey and Chen [1983].

4. KELVIN WAVES

4.1. Observed Structure

[34] In early satellite studies of CCEWs [Wallace and
Chang, 1972; Zangvil, 1975], a distinction was made
between relatively fast eastward propagating waves and
the slower, larger-scale MJO, which concentrates the ma-
jority of its spectral power at eastward zonal wave numbers
1 and 2 (Figure 1a). As higher-resolution satellite observa-
tions and global model data became available, more detailed
observations of fast eastward waves were collected, moti-
vated in particular by their interaction with the MJO. For
example, Nakazawa [1986, 1988] identified a hierarchical

structure within the MJO in which ‘‘short-period synoptic-
scale active convective cells,’’ now identified as Kelvin
waves, comprise a substantial portion of cloudiness within
the MJO itself. These ‘‘superclusters’’ had horizontal scales
of 3300–6600 km, time scales of<10 days, and eastward
phase speeds of 15–20 m s!1 over the west Pacific. The
Kelvin waves were themselves made up of even higher-
frequency westward moving disturbances (or ‘‘cloud clus-
ters’’), some of which are now known to be inertio-gravity
modes (see section 5). Later studies showed that Kelvin
waves typically propagate more slowly over the Indian
Ocean (12–15 m s!1) than other regions [Yang et al.,
2007b] and more slowly, more frequently, and with higher
amplitude through the active convective phase of the MJO
[Dunkerton and Crum, 1995; Roundy, 2008].
[35] To illustrate the complexity of cloudiness signals

associated with Kelvin waves, Figure 6 shows CLAUS Tb
averaged over 2.5!S–7.5!N during April–May 1987. A
wide variety of eastward moving cloudiness envelopes are
visible, ranging from large-scale features that propagate

Figure 6. Time-longitude section of CLAUS brightness temperature Tb, averaged from 2.5!S to 7.5!N,
from 1 April through 2 June 1987. Tb shading scale is shown at the bottom in !K.
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Source: Kiladis et al. (2009)
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Koopman Eigenfunctions

Annual cycle

Dominant
intraseasonal
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Coupled
Equatorial
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Spatiotemporal reconstruction

(a,e) Raw Signal
(b,f) Annual cycle
(c) Madden-Julian Oscillation (MJO)
(d,h) Westward-propagating disturbances
(g) Boreal Summer Intraseasonal Oscillation (BSISO)
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CCEW: mixed Rossby-gravity wave
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CCEW: Kelvin wave
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CCEW: equatorial Rossby wave

Temporal pattern and frequency spectrum
Hovmoller
diagram
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Summary

• We have demonstrated the potential of data-driven Koopman operator
techniques for extraction of spatiotemporal patterns from
high-dimensional multiscale timeseries generated by nonlinear dynamical
systems.

• The method relies on constructing low-dimensional representations
(feature maps) of spatiotemporal signals using eigenfunctions of the
Koopman operator governing the evolution of observables in ergodic
dynamical systems.

• This operator is estimated from time-ordered data through a Galerkin
scheme applied to basis functions computed via the di↵usion maps
algorithm.

• In particular, applying this method to 2D brightness temperature data
over the tropics, we identified several propagating patterns corresponding
to CCEWs.

• To our knowledge, recovery of such patterns from brightness temperature
data has previously not been possible via objective eigendecomposition
techniques.
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