Testable Bounded Degree Graph Properties Are Random Order Streamable

> Morteza Monemizadeh Rutgers, Amazon

Joint work with: S. Muthukrishnan, Pan Peng, Christian Sohler

Sparse Graphs

Given a graph G(V,E) where n=|V| and m=|E|=O(n).

d-Bounded Degree Graphs

Given a graph G(V,E) whose maximum degree d is constant, where n=|V| and $0 \le m = |E| \le nd$.

(E,k,d)-Hyperfinite G(V,E)

G is (ε, k, d) -hyperfinite graph if we remove a set of at most εdn edges of G s.t. the remaining graph has connected components of size at most k.

Arboricity

Is a way to quantify the density of a graph G(V,E).
c = max_U {|E(U)|/(|U|-1)} where U is a subset of V.
G can be partitioned into at most c forests.
Planar graphs have arboricity c = 3.

Maximum Matching

Given a graph G(V,E), find a set of pairwise non-adjacent of maximum size, i.e., no two edges share a common edge.

Maximum Matching

→ 30-years-old algorithm due to Micali and Vazirani with running time $m\sqrt{n}$.

Greedy algorithm returns maximal matching (2-approximation of maximum matching).

Maximum Matching

→ 30-years-old algorithm due to Micali and Vazirani with running time $m\sqrt{n}$.

Greedy algorithm returns maximal matching (2-approximation of maximum matching).

Big Data Models for Graphs

Data Streams: Graph Streams

Property Testing: Testing Graph Properties.

Sublinear Time Approximation Algorithms

Streaming Model

Stream S =

Streaming Model

Stream S = (2,4), (3,6), (2,7), (4,6), ...

Graph Streams

Adverserial or Random Order Model

O(c)-approximate the size of matching in cbounded arboricity graphs using O(clog² n) space in adversarial model.

O(polylog n)-approximate the size of matching in general graphs using O(polylog n) space in random order model.

Graph Streams

Adverserial or Random Order Model

In general, it is not clear which graph problems can be solved with much smaller space in the random order stream than in the adversary order stream.

Graph Streams

Semi-Streaming Model: O(n polylog(n)) space

Sparse Graphs: m=O(n)

 \bigcirc O(polylog(n)) or even better O(1) space

Constant Query Property Testing

d-Bounded Graph

Given a graph G(V,E) whose maximum degree d is constant, where n=|V| and $0 \le m = |E| \le nd$.

Adjacency List Model

Query access to the adjacency list of G:

For any vertex v and index i one can query the i-th neighbor (if exists) of v in constant time.

Property Testing

A property \prod_n for d-bounded n-vertex graphs is testable with query complexity q, if for every $\boldsymbol{\varepsilon}$, d and n, there exists an algorithm that performs q(n,d, $\boldsymbol{\varepsilon}$) queries to the adjacency list of the graph and with probability 2/3

 \Box Accepts any n-vertex d-bounded graph G satisfying \prod_{n} ,

 \Box Rejects any n-vertex d-bounded graph G that is $\boldsymbol{\varepsilon}$ -far from satisfying \prod_n ,

□ If $q(d, \varepsilon)$ is independent of n, we call \prod_n constant query testable.

Property Testing

Theorem: Any d-bounded graph property that is constant-query testable in the adjacency list model can be tested in random order streaming model with constant space.

Examples

Adversary Order Model:

Testing k-edge connectivity, k-vertex connectivity and cycle-freeness of d-bounded degree graphs needs $\Omega(n^{1-O(\epsilon)})$ space.

Dynamic graph stream algorithms in o(n) space. Huang and Peng, ICALP 2016.

Examples

Random Order Model:

k-edge connectivity, k-vertex connectivity and cyclefreeness of d-bounded degree graphs are testable in constant space in the random order stream model, since they are constant-query testable in the adjacency list model.

Property testing in bounded degree graphs.Oded Goldreich and Dana Ron, Algorithmica 2002

Property Testing

Proof (sketch): Every constant query property
tester

Samples a constant number of vertices

Explores the k-discs of these vertices?

Makes deterministic decisions based on the explored graph.

k-disc

The local neighborhood of depth k of a vertex is the subgraph induced by all vertices of distance at most k.

k-disc

The local neighborhood of depth k of a vertex is the subgraph induced by all vertices of distance at most k.

k-disc

The local neighborhood of depth k of a vertex is the subgraph induced by all vertices of distance at most k.

A k-disc has at most d^{k+1} vertices and d^{k+2} edges.

Constant-Time Approximation Algorithms

Adjacency List Model

Query access to the adjacency list of G:

For any vertex v index i one can query the the i-th neighbor (if exists) of v in constant time.

(x,y)-Approximation

We call a value t an (x,y)-approximation for the problem P, if for any instance I, we have

 $OPT(I) \le t \le x \cdot OPT(I) + y$

For a minimization optimization problem P and an instance I, we let OPT(I) denote the value of some optimal solution of I.

Theorem: There exists an algorithm that uses constant space in the random order model, and with probability 2/3, $(1,\epsilon n)$ -approximates the size of a maximal matching.

Based on Locality Lemma due to Nguyen and Onak, FOCS'08

Similar result holds for minimum vertex cover, maximum matching, the number of connected components.

Theorem: There exists an algorithm that uses constant space in the random order model, and with probability 2/3, $(1\pm\epsilon)$ -approximates the size of a maximal matching.

Greedy Matching

Stream: $e_1 e_2 e_3 e_4 \dots e_i \dots$

Current Matching M

Is e_i in M?

Current Matching M

k-Disc Primitive in Data Streams

k-disc Primitive

Given a random order stream S of edges of an underlying d-bounded degree graph G(V,E).

Sample the full k-disc of a vertex v (almost) uniformly at random.

2-Pass Streaming Algorithm

First Pass:

Sample a set S of $(d^{k+2})!$ vertices and collect their observed k-discs in S.

In expectation, there exists at least one vertex in S whose full k-disc is observed.

Second Pass:

Find the degree of vertices in (partially explored) k-discs of the vertices in S.

Report the k-disc of a vertex in S that is fully explored.

1-Pass Streaming Algorithm

Partial Order

 Δ_{i}

 $H_{d,k}=\{\Delta_1,\ldots,\Delta_x\}$: The set of all k-disc isomorphism types.

 $\Delta_i \ge \Delta_j : \Delta_j$ is root-preserving isomorphic to some subgraph of Δ_i .

Ordering

Order all the k-disc types $\Delta_1, \ldots, \Delta_x$ such that if $\Delta_i \ge \Delta_j$, then $i \le j$.

Ordering

Order all the k-disc types $\Delta_1, \ldots, \Delta_x$ such that if $\Delta_i \ge \Delta_j$, then $i \le j$.

Frequency Vector F(G,d)

 V_i : The set of vertices with k-disc isomorphic to Δ_i ,

 $\overline{V_i} = \{ v \in V: \operatorname{disc}_{k,G}(v) \cong \Delta_i \}$

 $|V_i|$ $f_i = |V_i|/n$

Marginal Probability

Let S be a random order Stream.

Let v be a vertex with k-disc isomorphic to Δ_i .

Marginal Probability: The probability $\lambda(\Delta_j | \Delta_i)$ that the observed k-disc of v in S is $disc_k(v,S) \cong \Delta_j$ for any j such that $\Delta_i \ge \Delta_j$.

Stream S: ..., e',..., e'', ..., e,...

Preprocssing:

Sample a set T of O($2^{(d^{k+2})}! / \epsilon^2$) vertices.

Preprocssing:

Sample a set T of $O(2^{(d^{k+2})!}/\mathcal{E}^2)$ vertices.

Streaming:

For each vertex v ∈ T:
Collect the observed k-disc disc_k(v,S) from the stream S.
Let H_v be disc_k(v,S).

Postprocessing: Let $H = \bigcup_{v \in T} H_v$.

Postprocessing: Let $H = \bigcup_{v \in T} H_v$. For i =1 to x where x=|F(G,d)|

Postprocessing: Let $H = \bigcup_{v \in T} H_v$. For i = 1 to x where x = |F(G,d)| $\bigvee Y_i = |\{v \in T: disc_{k,H}(v) \cong \Delta_i\}|/|T|$

Postprocessing: Let $H = \bigcup_{v \in T} H_v$. For i =1 to x where x=|F(G,d)| \bigvee $Y_i = |\{v \in T: disc_{k,H}(v) \cong \Delta_i\}|/|T|$ $X_{i} = (Y_{i} - \sum_{j \in G(i)} X_{j} \cdot \lambda(\Delta_{i} | \Delta_{j})) \cdot \lambda^{-1}(\Delta_{i} | \Delta_{i})$

G(i): All the indices j, except i itself, such that $\Delta_j \ge \Delta_i$.

Postprocessing: Let $H = \bigcup_{v \in T} H_v$. For i =1 to x where x=|F(G,d)| \bigvee $Y_i = |\{v \in T: disc_{k,H}(v) \cong \Delta_i\}|/|T|$ $X_{i} = (Y_{i} - \sum_{j \in G(i)} X_{j} \cdot \lambda(\Delta_{i} | \Delta_{j})) \cdot \lambda^{-1}(\Delta_{i} | \Delta_{i})$ Return X_1, \ldots, X_x .

G(i): All the indices j, except i itself, such that $\Delta_j \ge \Delta_i$.

Open Problems

In general, it is not clear which graph problems can be solved with much smaller space in the random order stream than in the adversary order stream.

What can we say about testing graph properties of unbounded planar (or minor-free) graphs in data streams?

Thank You

(Almost) Isomorphic Graphs

Benjamini, Shapira, and Schramm, STOC'08 Newman and Sohler, STOC'11

 G_1 and G_2 : (E,k,d)-hyperfinite graphs.

If $|F(G_1,d)-F(G_2,d)|_1 \le \mathcal{E}dn$, then G_1 and G_2 are \mathcal{E} -close.

G₁ and G₂ are E-close:

If we insert/delete at most Edn edges from G_1 , then G_1 and G_2 becomes isomorphic.