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Sparse Graphs

Given a graph G(V,E)  where n=|V| and m = |E| = O(n).



Examples 



d-Bounded Degree Graphs

Given a graph G(V,E) whose maximum degree d is 
constant, where n=|V| and 0 ≤ m = |E| ≤ nd.



(Ɛ,k,d)-Hyperfinite G(V,E)

G is (Ɛ,k,d)-hyperfinite graph if we remove a set of at 
most Ɛdn edges of G s.t. the remaining graph has 
connected components of size at most k. 



  
☛ Is a way to quantify the density of a graph G(V,E).  
☛ c = maxU {|E(U)|/(|U|-1)} where U is a subset of V. 
☛ G can be partitioned into at most c forests.  
☛ Planar graphs have arboricity c = 3.  

Arboricity



Maximum Matching

   Given a graph G(V,E), find a set of pairwise 
non-adjacent of maximum size, i.e., no two 
edges share a common edge. 



Example



Example



Maximum Matching
  
☛  30-years-old algorithm due to Micali and Vazirani with 

running time m√n.  
☛  Greedy algorithm returns maximal matching (2-

approximation of maximum matching). 
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Big Data Models for Graphs

☞ Data Streams: Graph Streams

☞ Property Testing: Testing Graph Properties. 

☞ Sublinear Time Approximation Algorithms 
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Graph Streams

☞ Adverserial or Random Order Model 

☞ O(c)-approximate the size of matching in c-
bounded arboricity graphs using O(clog2 n) 
space in adversarial model. 

☞ O(polylog n)-approximate the size of 
matching in general graphs using O(polylog n) 
space in random order model. 



Graph Streams

☞ Adverserial or Random Order Model 

In general, it is not clear which graph problems 
can be solved with much smaller space in the 
random order stream than in the adversary order 
stream.  



Graph Streams

☞ Semi-Streaming Model: O(n polylog(n)) space

☞ Sparse Graphs: m=O(n) 

☞ O(polylog(n)) or even better O(1) space



Constant Query Property Testing



d-Bounded Graph

Given a graph G(V,E) whose maximum degree d is 
constant, where n=|V| and 0 ≤ m = |E| ≤ nd.



Adjacency List Model

Query access to the adjacency list of  G:  

    For any vertex v and index i one can query the i-th 
neighbor (if exists) of v in constant time. 



Property Testing

A property ∏n for d-bounded n-vertex graphs is testable with 
query complexity q, if for every 𝞮, d and n, there exists an 
algorithm that performs q(n,d, 𝞮) queries to the adjacency list 
of the graph and with probability 2/3  

❑ Accepts any n-vertex d-bounded graph G satisfying ∏n,   

❑ Rejects any n-vertex d-bounded graph G that is 𝞮-far from satisfying ∏n,   

❑ If q(d, 𝞮) is independent of n, we call ∏n constant query testable. 



Property Testing

Theorem: Any d-bounded graph property that is 
constant-query testable in the adjacency list model can 
be tested in random order streaming model with constant 
space. 



Examples

Adversary Order Model:  

Testing k-edge connectivity, k-vertex connectivity and 
cycle-freeness of d-bounded degree graphs needs 𝝮(n1-O(ε)) 
space.

Dynamic graph stream algorithms in o(n) space.  
Huang and Peng, ICALP 2016. 



Random Order Model:  
k-edge connectivity, k-vertex connectivity and cycle-
freeness of d-bounded degree graphs are testable in 
constant space in the random order stream model, since they 
are constant-query testable in the adjacency list model.   

Examples

Property testing in bounded degree graphs.  
Oded Goldreich and Dana Ron, Algorithmica 2002 



Property Testing

Proof (sketch): Every constant query property 
tester  

❑  Samples a constant number of vertices 

❑  Explores the k-discs of these vertices?   

❑  Makes deterministic decisions based on the explored 
graph. 



k-disc
The local neighborhood of depth k of a vertex is the 
subgraph induced by all vertices of distance at most k.

v
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k-disc
The local neighborhood of depth k of a vertex is the 
subgraph induced by all vertices of distance at most k.

… …

A k-disc has at most dk+1 vertices and dk+2 edges. 

v



Constant-Time Approximation 
Algorithms



Adjacency List Model

Query access to the adjacency list of  G:  

    For any vertex v index i one can query the the i-th 
neighbor (if exists) of v in constant time. 



(x,y)-Approximation

We call a value t an (x,y)-approximation for the problem 
P, if for any instance I, we have  

                     OPT(I) ≤ t ≤  x⋅OPT(I)+y

For a minimization optimization problem P and an instance I, we let OPT(I) denote 
the value of some optimal solution of I.  



Theorem: There exists an algorithm that uses 
constant space in the random order model, and with 
probability 2/3, (1,ɛn)-approximates the size of a 
maximal matching.   

O(1)-time Approximation Algorithm

Based on Locality Lemma due to Nguyen and Onak, FOCS’08



O(1)-time Approximation Algorithm

Similar result holds for minimum vertex cover, 
maximum matching, the number of connected 
components.   



O(1)-time Approximation Algorithm

Theorem: There exists an algorithm that uses 
constant space in the random order model, and with 
probability 2/3, (1±ɛ)-approximates the size of a 
maximal matching.   
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O(1)-time Approximation Algorithm

Stream : …

Greedy Matching

Current Matching 
M

Is ei in M?
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O(1)-time Approximation Algorithm



k-Disc Primitive in Data Streams



k-disc Primitive

Given a random order stream S of edges of an 
underlying d-bounded degree graph G(V,E).  

Sample the full k-disc of a vertex v (almost) uniformly 
at random.  



2-Pass Streaming Algorithm



2-Pass Algorithm

Sample a set S of (dk+2)! vertices and collect their 
observed k-discs in S.  

In expectation, there exists at least one vertex in S 
whose full k-disc is observed. 

First Pass: 



2-Pass Algorithm

Find the degree of vertices in (partially explored) k-discs 
of the vertices in S.  

Report the k-disc of a vertex in S that is fully explored. 

Second Pass: 



1-Pass Streaming Algorithm



Partial Order 

Δi≽Δj : Δj is root-preserving isomorphic to some 
subgraph of Δi.

≽

Hd,k={Δ1,…,Δx} : The set of all k-disc isomorphism 
types.

Δi Δj



Ordering

Order all the k-disc types Δ1,…, Δx such that          
if Δi≽Δj, then i ≤ j.  

………

Δi Δj



Ordering

Order all the k-disc types Δ1,…, Δx such that 
if Δi≽Δj, then i ≤ j.  

G(j): All the indices i, except j itself, such that Δi≽Δj.  

………

Δi Δj



Frequency Vector F(G,d)
Vi: The set of vertices with k-disc isomorphic to Δi ,  

                                Vi={v ∈ V: disck,G(v) ≅ Δi}

1010010 2324 8273 9744
|Vi| fi=|Vi|/n

………

Δi Δj



Marginal Probability
Let S be a random order Stream.  

Let v be a vertex with k-disc isomorphic to Δi.  

Marginal Probability: The probability λ(Δj|Δi) that the observed 
k-disc  of v in S is disck(v,S) ≅ Δj for any j such that Δi≽Δj.

Stream S: …, e’,…, e’’, …, e,…
Δi

e
e’

e’’

Δj

e≽



1-Pass Algorithm

Sample a set T of O(2(dk+2)! /Ɛ2) vertices. 
Preprocssing: 



☞ Let Hv be disck(v,S).

☞ Collect the observed k-disc disck(v,S) from 
the stream S. 

1-Pass Algorithm

Sample a set T of O(2(dk+2)! /Ɛ2) vertices. 
Preprocssing: 

Streaming: 
For each vertex v ∈ T:



1-Pass Algorithm

Let H= ∪v ∈ T Hv .

Postprocessing: 



1-Pass Algorithm

Let H= ∪v ∈ T Hv .

Postprocessing: 

For i =1 to x where x=|F(G,d)|



☞   Yi=|{v ∈ T: disck,H(v) ≅ Δi}|/|T|

1-Pass Algorithm

Let H= ∪v ∈ T Hv .

Postprocessing: 

For i =1 to x where x=|F(G,d)|



☞   Xi=(Yi-∑j∈G(i) Xj· λ(Δi|Δj))· λ-1(Δi|Δi)

☞   Yi=|{v ∈ T: disck,H(v) ≅ Δi}|/|T|

1-Pass Algorithm

Let H= ∪v ∈ T Hv .

Postprocessing: 

For i =1 to x where x=|F(G,d)|

G(i): All the indices j, except i itself, such that Δj≽Δi.  



☞   Xi=(Yi-∑j∈G(i) Xj· λ(Δi|Δj))· λ-1(Δi|Δi)

☞   Yi=|{v ∈ T: disck,H(v) ≅ Δi}|/|T|

1-Pass Algorithm

Let H= ∪v ∈ T Hv .

Postprocessing: 

For i =1 to x where x=|F(G,d)|

G(i): All the indices j, except i itself, such that Δj≽Δi.  

Return X1,…, Xx.



Open Problems

☞  In general, it is not clear which graph problems can be 
solved with much smaller space in the random order stream 
than in the adversary order stream.  

☞  What can we say about testing graph properties of 
unbounded planar (or minor-free) graphs in data streams?  



Thank You



(Almost) Isomorphic Graphs

Benjamini, Shapira, and Schramm, STOC’08
Newman and Sohler, STOC’11

If |F(G1,d)-F(G2,d)|1 ≤ Ɛdn, then G1 and G2 are Ɛ-close. 

If we insert/delete at most  Ɛdn edges from G1, then G1 and 
G2 becomes isomorphic. 

G1 and G2 are Ɛ-close: 

G1 and G2 : (Ɛ,k,d)-hyperfinite graphs.


