Optimal lower bounds for samplers, finding duplicates, and universal relation

Jelani Nelson
Harvard

March 21, 2017
joint work with Jakub Pachocki (OpenAI) and Zhengyu Wang (Harvard)

Turnstile streaming

\downarrow vector $z \in \mathbb{R}^{n}$ starts off as 0 , updates " $z_{i} \leftarrow z_{i}+\Delta$ ", $\Delta \in \mathbb{R}$

Turnstile streaming

\vee vector $z \in \mathbb{R}^{n}$ starts off as 0 , updates " $z_{i} \leftarrow z_{i}+\Delta$ ", $\Delta \in \mathbb{R}$
\downarrow data structure supporting various types of queries to z

Turnstile streaming

\downarrow vector $z \in \mathbb{R}^{n}$ starts off as 0 , updates " $z_{i} \leftarrow z_{i}+\Delta^{\prime}$ ", $\Delta \in \mathbb{R}$

- data structure supporting various types of queries to z
- Assumptions and examples:
- Insertion-only: $\Delta=1$ always
e.g. n is size of lexicon. Google search for word i causes update to i, so z_{i} is frequency of word i. Might want to find frequent query words ("heavy hitters").
- Strict turnstile: Δ positive or negative, but $\forall i z_{i} \geq 0$ always e.g. graph on N vertices, $n=\binom{N}{2}$. Edge insertion of e causes $z_{e} \leftarrow z_{e}+1$, and deletion has $\Delta=-1$. Never delete edges that don't already exist (no negative edge multiplicities).
- (General) turnstile: No additional assumptions same as insertion-only example, but searches yesterday have $\Delta=-1$ and today have $\Delta=1 . z_{i}$ is then change in frequency, now want to find words with large changes.

Sampling in streams

- Early work on reservoir sampling: sample k items from insertion-only stream using $O(k \log n)$ bits of memory. attributed in [Knuth'81] to Alan G. Waterman

Sampling in streams

- Early work on reservoir sampling: sample k items from insertion-only stream using $O(k \log n)$ bits of memory. attributed in [Knuth'81] to Alan G. Waterman
- solves ℓ_{1}-sampling in insertion-only: for $k=1, \mathbb{P}(i$ is the sampled item $)=\frac{\left|z_{i}\right|}{\|z\|_{1}}$

Sampling in streams

- Early work on reservoir sampling: sample k items from insertion-only stream using $O(k \log n)$ bits of memory. attributed in [Knuth'81] to Alan G. Waterman
- solves ℓ_{1}-sampling in insertion-only: for $k=1, \mathbb{P}(i$ is the sampled item $)=\frac{\left|z_{i}\right|}{\|z\|_{1}}$
- What about (strict) turnstile? Other sampling distributions?

Sampling in turnstile streams

ℓ_{p}-sampling

ℓ_{0}-sampling

- $p_{i}=\frac{|z|_{i}^{p}}{\|z\|_{p}^{p}}$
- [Coppersmith, Kumar '04] asked whether ℓ_{2} sampling is possible in small space (would lead to nearly space-optimal algorithms for ℓ_{p}-norm estimation for $p>2$).
- First small-space solution in [Monemizadeh, Woodruff '10].
v $p_{i}= \begin{cases}\frac{1}{\|z\|_{0}}, & z_{i} \neq 0 \\ 0, & \text { otherwise }\end{cases}$
- Originally asked about in [Cormode, Muthu, Rozenbaum '05] and [Frahling, Indyk, Sohler '05].
- Shown to be a useful primitive for turnstile graph streaming in [Ahn, Guha, McGregor '10].

Sampling in turnstile streams

$$
\begin{aligned}
& \ell_{p^{\prime}} \text {-sampling }(0<p<2) \\
& { }^{\text {all }} \text { space measured in bits }
\end{aligned}
$$

- [Monemizadeh, Woodruff '10]: in poly $\left(\varepsilon^{-1} \log n\right)$ space, whp sample has distribution within $1 \pm \varepsilon$ of $p_{i}=\frac{\left|z_{i}\right|^{p}}{\|z\|_{p}^{p}}$
- [Andoni, Krauthgamer, Indyk '11]: constant failure probability, $O\left(\varepsilon^{-p} \log ^{3} n\right)$ space for $1 \leq p \leq 2$

Sampling in turnstile streams

$$
\begin{aligned}
& \ell_{p^{\prime}} \text {-sampling }(0<p<2) \\
& { }^{\text {all }} \text { space measured in bits }
\end{aligned}
$$

- [Monemizadeh, Woodruff '10]: in poly $\left(\varepsilon^{-1} \log n\right)$ space, whp sample has distribution within $1 \pm \varepsilon$ of $p_{i}=\frac{\left|z_{i}\right|^{p}}{\|z\|_{p}^{p}}$
- [Andoni, Krauthgamer, Indyk '11]: constant failure probability, $O\left(\varepsilon^{-p} \log ^{3} n\right)$ space for $1 \leq p \leq 2$
- State-of-the-art. [Jowhari, Sağlam, Tardos '11]:
$O\left(\varepsilon^{-\max \{1, p\}} \log (1 / \delta) \log ^{2} n\right)$ space for $p \neq 1$. $O\left(\varepsilon^{-1} \log (1 / \varepsilon) \log (1 / \delta) \log ^{2} n\right)$ for $p=1$.

Sampling in turnstile streams

$$
\begin{aligned}
& \ell_{p^{\prime}} \text {-sampling }(0<p<2) \\
& { }^{\text {all }} \text { space measured in bits }
\end{aligned}
$$

- [Monemizadeh, Woodruff '10]: in poly $\left(\varepsilon^{-1} \log n\right)$ space, whp sample has distribution within $1 \pm \varepsilon$ of $p_{i}=\frac{\left|z_{i}\right|^{p}}{\|z\|_{p}^{p}}$
- [Andoni, Krauthgamer, Indyk '11]: constant failure probability, $O\left(\varepsilon^{-p} \log ^{3} n\right)$ space for $1 \leq p \leq 2$
- State-of-the-art. [Jowhari, Sağlam, Tardos '11]: $O\left(\varepsilon^{-\max \{1, p\}} \log (1 / \delta) \log ^{2} n\right)$ space for $p \neq 1$. $O\left(\varepsilon^{-1} \log (1 / \varepsilon) \log (1 / \delta) \log ^{2} n\right)$ for $p=1$. for constant ε, space is $O\left(\log (1 / \delta) \log ^{2} n\right)$.

Sampling in turnstile streams

ℓ_{0}-sampling
*all space measured in bits

- [Frahling, Indyk, Sohler'05]: $O\left(\log ^{3} n\right)$ space, whp success

Sampling in turnstile streams

ℓ_{0}-sampling
 *all space measured in bits

- [Frahling, Indyk, Sohler'05]: $O\left(\log ^{3} n\right)$ space, whp success
- State-of-the-art. [Jowhari, Sağlam, Tardos '11]: $O\left(\log (1 / \delta) \log ^{2} n\right)$ space (w.p. δ can output anything, and w.p. $1-\delta$ outputs uniformly random element from support(z))

Sampling in turnstile streams

ℓ_{0}-sampling
 *all space measured in bits

- [Frahling, Indyk, Sohler'05]: $O\left(\log ^{3} n\right)$ space, whp success
- State-of-the-art. [Jowhari, Sağlam, Tardos '11]: $O\left(\log (1 / \delta) \log ^{2} n\right)$ space (w.p. δ can output anything, and w.p. $1-\delta$ outputs uniformly random element from support(z))
- In fact, [JST11] spits out $\min \left\{\|z\|_{0}, \Theta(\log (1 / \delta))\right\}$ uniform random elements from support, without replacement
- motivates studying ℓ_{0}-sampling ${ }_{k}$ (have to output $\min \left\{k,\|z\|_{0}\right\}$ samples from support, w/o replacement)
- [JST11] achieves space $O\left(t \log ^{2} n\right)$ for ℓ_{0}-sampling ${ }_{k}$ for $t=\max \{k, \log (1 / \delta)\}$.

Sampling in turnstile streams

ℓ_{0}-sampling
*all space measured in bits

Sampling in turnstile streams

ℓ_{0}-sampling
*all space measured in bits

Since [Ahn, Guha, McGregor '12a], used as a subroutine in seemingly every known turnstile algorithm for dynamic graphs.

Sampling in turnstile streams

ℓ_{0}-sampling
*all space measured in bits

Since [Ahn, Guha, McGregor '12a], used as a subroutine in seemingly every known turnstile algorithm for dynamic graphs.

connectivity [Ahn, Guha, McGregor '12a]
> k-connectivity [Ahn, Guha, McGregor '12a]
> bipartiteness [Ahn, Guha, McGregor '12a]
minimum spanning tree [Ahn, Guha, McGregor '12a]

- subgraph counting [Ahn, Guha, McGregor '12b]
- minimum cut [Ahn, Guha, McGregor '12b]
> cut-sparsifiers [Ahn, Guha, McGregor '12b]
- spanners [Ahn, Guha, McGregor '12b]
b spectral sparsifiers [Ahn, Guha, McGregor '13]
$>$ maximal matching [Chitnis et al. '15]
$>$ maximum matching [Ahn, Guha, McGregor '1a], [Bury, Schwiegelshohn '15], [Konrad '15], [Assadi et al. '16], [Chitnis et al. '16], [Assadi et al. '17]
- vertex cover [Chitnis et al. '15], [Chitnis et al. '16]

D hitting set [Chitnis et al. '16]

- b-matching [Chitnis et al. '16]

D disjoint paths [Chitnis et al. '16]

- k-colorable subgraph and several other maximum subgraph problems [Chitnis et al. '16]
d densest subgraph [Bhattacharya et al. '15], [McGregor et al. '15], [Esfandiari et al. '16]
> vertex and hyperedge connectivity [Guha, McGregor, Tench '15]
> graph degeneracy [Farach-Colton, Tsai '16]

Sampling in turnstile streams

ℓ_{0}-sampling
*all space measured in bits

Abstract

Since [Ahn, Guha, McGregor '12a], used as a subroutine in seemingly every known turnstile algorithm for dynamic graphs.

connectivity [Ahn, Guha, McGregor '12a]
$>$ k-connectivity [Ahn, Guha, McGregor '12a]
b bipartiteness [Ahn, Guha, McGregor '12a]
minimum spanning tree [Ahn, Guha, McGregor '12a]

- subgraph counting [Ahn, Guha, McGregor '12b]
> minimum cut [Ahn, Guha, McGregor '12b]
> cut-sparsifiers [Ahn, Guha, McGregor '12b]
- spanners [Ahn, Guha, McGregor '12b]
b spectral sparsifiers [Ahn, Guha, McGregor '13]
maximal matching [Chitnis et al. '15]
> maximum matching [Ahn, Guha, McGregor '1a], [Bury, Schwiegelshohn '15], [Konrad '15], [Assadi et al. '16], [Chitnis et al. '16], [Assadi et al. '17]
- vertex cover [Chitnis et al. '15], [Chitnis et al. '16]

D hitting set [Chitnis et al. '16]

- b-matching [Chitnis et al. '16]

D disjoint paths [Chitnis et al. '16]

- k-colorable subgraph and several other maximum subgraph problems [Chitnis et al. '16]
d densest subgraph [Bhattacharya et al. '15], [McGregor et al. '15], [Esfandiari et al. '16]
> vertex and hyperedge connectivity [Guha, McGregor, Tench '15]
graph degeneracy [Farach-Colton, Tsai '16]

Many algs don't need ℓ_{0}-sample, but rather just any $i \in \operatorname{supp}(z)$

One other problem: finding duplicates

Given a stream of $n+1$ integers from [n], pigeonhole says there must be at least one duplicate. Find it!

One other problem: finding duplicates

Given a stream of $n+1$ integers from [n], pigeonhole says there must be at least one duplicate. Find it!

- [Gopalan, Radhakrishnan '09]: $O\left(\log ^{3} n\right)$ space for constant δ (reduction to ℓ_{1}-sampling)

One other problem: finding duplicates

Given a stream of $n+1$ integers from [n], pigeonhole says there must be at least one duplicate. Find it!

- [Gopalan, Radhakrishnan '09]: $O\left(\log ^{3} n\right)$ space for constant δ (reduction to ℓ_{1}-sampling)
- State-of-the-art. [Jowhari, Sağlam, Tardos '11]: $O\left(\log (1 / \delta) \log ^{2} n\right)$ space for failure prob. δ.

Our main contribution

Our contribution [Nelson, Pachocki, Wang '17]

- Finding any element of support(z) in strict turnstile streams requires $\Omega\left(\min \left\{n, \log (1 / \delta) \log ^{2} \frac{n}{\log (1 / \delta)}\right\}\right)$ space.

Our contribution [Nelson, Pachocki, Wang '17]

- Finding any element of support (z) in strict turnstile streams requires $\Omega\left(\min \left\{n, \log (1 / \delta) \log ^{2} \frac{n}{\log (1 / \delta)}\right\}\right)$ space.
- Finding any k elements from support in strict turnstile requires $\Omega\left(\min \left\{n, t \log ^{2}(n / t)\right\}\right)$ space for $t=\max \{k, \log (1 / \delta)\}$.

Our contribution [Nelson, Pachocki, Wang '17]

- Finding any element of support(z) in strict turnstile streams requires $\Omega\left(\min \left\{n, \log (1 / \delta) \log ^{2} \frac{n}{\log (1 / \delta)}\right\}\right)$ space.
- Finding any k elements from support in strict turnstile requires $\Omega\left(\min \left\{n, t \log ^{2}(n / t)\right\}\right)$ space for $t=\max \{k, \log (1 / \delta)\}$.
- Implies tight lower bounds for ℓ_{p}-sampling for any $0 \leq p<2$ and also ℓ_{0}-sampling k for $t<n^{.99}$.

Our contribution [Nelson, Pachocki, Wang '17]

- Finding any element of support(z) in strict turnstile streams requires $\Omega\left(\min \left\{n, \log (1 / \delta) \log ^{2} \frac{n}{\log (1 / \delta)}\right\}\right)$ space.
- Finding any k elements from support in strict turnstile requires $\Omega\left(\min \left\{n, t \log ^{2}(n / t)\right\}\right)$ space for $t=\max \{k, \log (1 / \delta)\}$.
- Implies tight lower bounds for ℓ_{p}-sampling for any $0 \leq p<2$ and also ℓ_{0}-sampling ${ }_{k}$ for $t<n^{.99}$.
- Also show lower bound (tight for $\delta>2^{-n^{.99}}$) of $\Omega\left(\min \left\{n, \log (1 / \delta) \log ^{2} \frac{n}{\log (1 / \delta)}\right\}\right)$ space for finding duplicates.

Our contribution [Nelson, Pachocki, Wang '17]

- Finding any element of support(z) in strict turnstile streams requires $\Omega\left(\min \left\{n, \log (1 / \delta) \log ^{2} \frac{n}{\log (1 / \delta)}\right\}\right)$ space.
- Finding any k elements from support in strict turnstile requires $\Omega\left(\min \left\{n, t \log ^{2}(n / t)\right\}\right)$ space for $t=\max \{k, \log (1 / \delta)\}$.
- Implies tight lower bounds for ℓ_{p}-sampling for any $0 \leq p<2$ and also ℓ_{0}-sampling k for $t<n^{.99}$.
- Also show lower bound (tight for $\delta>2^{-n^{.99}}$) of $\Omega\left(\min \left\{n, \log (1 / \delta) \log ^{2} \frac{n}{\log (1 / \delta)}\right\}\right)$ space for finding duplicates.
- Lower bounds from UR (universal relation), as in [JST11] heart of our new tight result: new tight lower bound for UR

Our contribution [Nelson, Pachocki, Wang '17]

- Finding any element of support(z) in strict turnstile streams requires $\Omega\left(\min \left\{n, \log (1 / \delta) \log ^{2} \frac{n}{\log (1 / \delta)}\right\}\right)$ space.
- Finding any k elements from support in strict turnstile requires $\Omega\left(\min \left\{n, t \log ^{2}(n / t)\right\}\right)$ space for $t=\max \{k, \log (1 / \delta)\}$.
- Implies tight lower bounds for ℓ_{p}-sampling for any $0 \leq p<2$ and also ℓ_{0}-sampling k for $t<n^{.99}$.
- Also show lower bound (tight for $\delta>2^{-n^{.99}}$) of $\Omega\left(\min \left\{n, \log (1 / \delta) \log ^{2} \frac{n}{\log (1 / \delta)}\right\}\right)$ space for finding duplicates.
- Lower bounds from UR (universal relation), as in [JST11] heart of our new tight result: new tight lower bound for UR
- Theorem: $\mathbf{R}_{\delta}^{\rightarrow, \text { pub }}(\mathbf{U R})=\Theta\left(\min \left\{n, \log (1 / \delta) \log ^{2} \frac{n}{\log (1 / \delta)}\right\}\right)$

Universal relation

- Arose out of work of [Karchmer, Wigderson '88] on depth lower bounds for circuits
- $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- Alice receives $x \in f^{-1}(0)$, Bob receives $y \in f^{-1}(1)($ so $x \neq y)$
- must find $i \in[n]$ such that $x_{i} \neq y_{i}$

Universal relation

- Arose out of work of [Karchmer, Wigderson '88] on depth lower bounds for circuits
- $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- Alice receives $x \in f^{-1}(0)$, Bob receives $y \in f^{-1}(1)($ so $x \neq y)$
- must find $i \in[n]$ such that $x_{i} \neq y_{i}$
- Thm [KW88]: $D(f)=C(f)$
(Depth equals Deterministic Communication Complexity)

Universal relation

- Arose out of work of [Karchmer, Wigderson '88] on depth lower bounds for circuits
- $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- Alice receives $x \in f^{-1}(0)$, Bob receives $y \in f^{-1}(1)($ so $x \neq y)$
- must find $i \in[n]$ such that $x_{i} \neq y_{i}$
- Thm [KW88]: $D(f)=C(f)$
(Depth equals Deterministic Communication Complexity)
- Used in [KW88] to obtain tight $\Omega\left(\log ^{2} n\right)$ depth lower bound for monotone circuits computing $s-t$ connectivity

Universal relation

- Arose out of work of [Karchmer, Wigderson '88] on depth lower bounds for circuits
- $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- Alice receives $x \in f^{-1}(0)$, Bob receives $y \in f^{-1}(1)($ so $x \neq y)$
- must find $i \in[n]$ such that $x_{i} \neq y_{i}$
- Thm [KW88]: $D(f)=C(f)$
(Depth equals Deterministic Communication Complexity)
- Used in [KW88] to obtain tight $\Omega\left(\log ^{2} n\right)$ depth lower bound for monotone circuits computing s - t connectivity
- Later, [Karchmer, Raz, Wigderson'91] outlined strategy to separate $\mathbf{N C}^{1}$ from \mathbf{P} (and even from $\mathbf{N C}^{2}$): show a form of direct sum theorem for " k-fold composition" of functions ("KRW conjecture"), then apply k-fold composition to a "hard" function on $\log n$ variables with $k=\log n / \log \log n$.

Universal relation

- Arose out of work of [Karchmer, Wigderson '88] on depth lower bounds for circuits
- $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- Alice receives $x \in f^{-1}(0)$, Bob receives $y \in f^{-1}(1)($ so $x \neq y)$
- must find $i \in[n]$ such that $x_{i} \neq y_{i}$
- Thm [KW88]: $D(f)=C(f)$
(Depth equals Deterministic Communication Complexity)
- Used in [KW88] to obtain tight $\Omega\left(\log ^{2} n\right)$ depth lower bound for monotone circuits computing $s-t$ connectivity
- Later, [Karchmer, Raz, Wigderson'91] outlined strategy to separate $\mathbf{N C}{ }^{1}$ from \mathbf{P} (and even from $\mathbf{N C}^{2}$): show a form of direct sum theorem for " k-fold composition" of functions ("KRW conjecture"), then apply k-fold composition to a "hard" function on $\log n$ variables with $k=\log n / \log \log n$.
- Warmup [KRW91]: prove that direct sum theorem holds for k-fold composition of UR relation. (was later resolved positively in [Edmonds, Impagliazzo, Rudich, Sgall '91])

Universal relation

- UR: forget about the function f, just promised that $x \neq y$
- Alice, Bob get $x, y \in\{0,1\}^{n}$ (resp.) with promise $x \neq y$
- must find $i \in[n]$ such that $x_{i} \neq y_{i}$

Universal relation

- UR: forget about the function f, just promised that $x \neq y$
- Alice, Bob get $x, y \in\{0,1\}^{n}$ (resp.) with promise $x \neq y$
- must find $i \in[n]$ such that $x_{i} \neq y_{i}$
- Deterministic comm. complexity of UR very well understood (upper and lower bounds off by an additive 3 bits!), even in bounded number of rounds [Tardos, Zwick '97]

Universal relation

- UR: forget about the function f, just promised that $x \neq y$
- Alice, Bob get $x, y \in\{0,1\}^{n}$ (resp.) with promise $x \neq y$
\downarrow must find $i \in[n]$ such that $x_{i} \neq y_{i}$
- Deterministic comm. complexity of UR very well understood (upper and lower bounds off by an additive 3 bits!), even in bounded number of rounds [Tardos, Zwick '97]
- Here we focus on one-way communication complexity in the public coin model, $\mathbf{R}_{\delta}^{\rightarrow, p u b}(\mathbf{U R})$:
- Alice sends a single message to Bob
- Bob, based on that message, must output $i \in[n]$ s.t.

$$
\mathbb{P}\left(x_{i} \neq y_{i}\right) \geq 1-\delta
$$

Universal relation

- UR: forget about the function f, just promised that $x \neq y$
- Alice, Bob get $x, y \in\{0,1\}^{n}$ (resp.) with promise $x \neq y$
- must find $i \in[n]$ such that $x_{i} \neq y_{i}$
- Deterministic comm. complexity of UR very well understood (upper and lower bounds off by an additive 3 bits!), even in bounded number of rounds [Tardos, Zwick '97]
- Here we focus on one-way communication complexity in the public coin model, $\mathbf{R}_{\delta}^{\rightarrow, p u b}(\mathbf{U R})$:
- Alice sends a single message to Bob
- Bob, based on that message, must output $i \in[n]$ s.t.

$$
\mathbb{P}\left(x_{i} \neq y_{i}\right) \geq 1-\delta
$$

- will also look at some variants / promise versions:
- UR ${ }_{k}$: Bob must output $\min \left\{k,\|x-y\|_{0}\right\}$ differing indices
- UR ${ }^{\subset}$: Alice is promised $\operatorname{supp}(y) \subsetneq \operatorname{supp}(x)$
- UR ${ }^{+}$: Bob knows $|\operatorname{supp}(x)|$ (not super important ...)

Universal relation

Thm [NPW'17]: For any δ bounded away from 1 and any $k \in[n]$, $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R}_{k}\right)=\Theta\left(\min \left\{n, t \log ^{2}(n / t)\right\}\right)$ for $t=\max \{k, \log (1 / \delta)\}$.

Universal relation

Thm [NPW'17]: For any δ bounded away from 1 and any $k \in[n]$, $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R}_{k}\right)=\Theta\left(\min \left\{n, t \log ^{2}(n / t)\right\}\right)$ for $t=\max \{k, \log (1 / \delta)\}$.
${ }^{*}$ In fact, lower bound even holds for the special case $\mathbf{U R}_{k}^{\subset,+}$

Universal relation

Thm [NPW'17]: For any δ bounded away from 1 and any $k \in[n]$, $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R}_{k}\right)=\Theta\left(\min \left\{n, t \log ^{2}(n / t)\right\}\right)$ for $t=\max \{k, \log (1 / \delta)\}$.
${ }^{*}$ In fact, lower bound even holds for the special case $\mathbf{U R}_{k}^{\subset,+}$
Upper bound is a slight improvement of [JST11], which showed $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R}_{k}\right)=O\left(\min \left\{n, t \log ^{2} n\right\}\right)$.

Relevance to streaming lower bounds

[JST11] reduced UR to finding duplicates and (general turnstile) ℓ_{p}-sampling, then showed $\mathbf{R}_{\delta}^{\text {pub }, \rightarrow}(\mathbf{U R})=\Omega\left(\log ^{2} n\right)$.

Relevance to streaming lower bounds

[JST11] reduced UR to finding duplicates and (general turnstile) ℓ_{p}-sampling, then showed $\mathbf{R}_{\delta}^{\text {pub }, \rightarrow}(\mathbf{U R})=\Omega\left(\log ^{2} n\right)$.

In fact [JST11] even showed $\mathbf{R}_{\delta}^{\text {pub, } \rightarrow}\left(\mathbf{U R}^{\complement}\right)=\Omega\left(\log ^{2} n\right)$ (via reduction from Augmented-Indexing [Miltersen et al. '98], [Ergün, Jowhari, Sağlam '10], [Jayram, Woodruff '11]).

Relevance to streaming lower bounds

[JST11] reduced UR to finding duplicates and (general turnstile) ℓ_{p}-sampling, then showed $\mathbf{R}_{\delta}^{\text {pub }, \rightarrow}(\mathbf{U R})=\Omega\left(\log ^{2} n\right)$.

In fact [JST11] even showed $\mathbf{R}_{\delta}^{\text {pub, } \rightarrow}\left(\mathbf{U R}^{\complement}\right)=\Omega\left(\log ^{2} n\right)$ (via reduction from Augmented-Indexing [Miltersen et al. '98], [Ergün, Jowhari, Sağlam '10], [Jayram, Woodruff '11]).

- This observation makes reductions simpler and more powerful (hardness for even strict turnstile, and finding any element in the support instead of ℓ_{p}-sampling).

Relevance to streaming lower bounds

[JST11] reduced UR to finding duplicates and (general turnstile) ℓ_{p}-sampling, then showed $\mathbf{R}_{\delta}^{\text {pub }, \rightarrow}(\mathbf{U R})=\Omega\left(\log ^{2} n\right)$.

In fact [JST11] even showed $\mathbf{R}_{\delta}^{\text {pub, } \rightarrow}\left(\mathbf{U R}^{\complement}\right)=\Omega\left(\log ^{2} n\right)$ (via reduction from Augmented-Indexing [Miltersen et al. '98], [Ergün, Jowhari, Sağlam '10], [Jayram, Woodruff '11]).

- This observation makes reductions simpler and more powerful (hardness for even strict turnstile, and finding any element in the support instead of ℓ_{p}-sampling).
- It seems [JST11] not realize that they proved this (or at least, they did not realize that having proved this makes reductions a tad simpler!).

Reductions from UR ${ }^{\subset}$

Claim: Space complexity of finding an element in $\operatorname{supp}(z)$ in strict turnstile with failure probability δ is at least $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\subset}\right)$.

Reductions from UR ${ }^{\subset}$

Claim: Space complexity of finding an element in $\operatorname{supp}(z)$ in strict turnstile with failure probability δ is at least $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\subset}\right)$. Proof: Reduction from $\mathbf{U R}^{\subset}$. Suppose \mathcal{A} is algorithm for streaming problem. Alice updates $z_{i} \leftarrow z_{i}+1$ for all $i \in \operatorname{supp}(x)$ then sends memory contents of \mathcal{A} to Bob as message. Bob continues running \mathcal{A} and does $z_{i} \leftarrow z_{i}-1$ for all $i \in \operatorname{supp}(y)$. Then Bob outputs \mathcal{A}.query () .

Reductions from $\mathbf{U R}^{\subset}$

Claim: Space complexity of finding duplicate in stream of length $n+1$ with failure probability δ is at least $\mathbf{R}_{\delta}^{\rightarrow, \text { pub }}\left(\mathbf{U R}{ }^{\subset,+}\right)$.

Reductions from UR ${ }^{\subset}$

Claim: Space complexity of finding duplicate in stream of length $n+1$ with failure probability δ is at least $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\subset,+}\right)$. Proof: Reduction from $\mathbf{U R}^{\subset,+}$. Suppose \mathcal{A} is algorithm for finding duplicate. Alice puts i in stream for each $i \in \operatorname{supp}(x)$ then sends memory contents of \mathcal{A} to Bob as message. Bob continues running \mathcal{A} by appending to stream $n+1-|\operatorname{supp}(x)|$ indices $i \in[n] \backslash \operatorname{supp}(y)$. Then Bob outputs \mathcal{A}.query () .

The Main Event

Proof of our new lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R}{ }^{\text {C,+ }}\right.$)

Lower bound plan

- Idea: if \mathcal{P} is efficient 1-way protocol for $\mathbf{U R}^{\subset,+}$, use it to design efficient Las Vegas encoding for $\binom{[n]}{m}$ for particular m (encoding length is random variable; decoder always succeeds)

Lower bound plan

- Idea: if \mathcal{P} is efficient 1-way protocol for $\mathbf{U R}^{\text {C,+ }}$, use it to design efficient Las Vegas encoding for $\binom{[n]}{m}$ for particular m (encoding length is random variable; decoder always succeeds)
- any such encoding scheme needs $\geq \lg \binom{n}{m}=\Omega(m \log (n / m))$ bits in expectation \Longrightarrow lower bound for \mathcal{P}

Lower bound plan

- Idea: if \mathcal{P} is efficient 1-way protocol for $\mathbf{U R}^{\text {C,+ }}$, use it to design efficient Las Vegas encoding for $\binom{[n]}{m}$ for particular m (encoding length is random variable; decoder always succeeds)
- any such encoding scheme needs $\geq \lg \binom{n}{m}=\Omega(m \log (n / m))$ bits in expectation \Longrightarrow lower bound for \mathcal{P}
- Notation:
- E: encoder
- D: decoder
- Alice: $1^{\text {st }}$ player in supposed efficient protocol \mathcal{P} for $\mathbf{U R}^{\text {C,+ }}$
- Bob: $2^{\text {nd }}$ player in supposed efficient protocol \mathcal{P} for $\mathbf{U R}^{\subset,+}$
> S: subset of $[n],|S|=m$, to be encoded
- $\mathbf{1}_{S} \in\{0,1\}^{n}$ is indicator vector of S

Lower bound plan

- Idea: if \mathcal{P} is efficient 1-way protocol for $\mathbf{U R}^{\text {C,+ }}$, use it to design efficient Las Vegas encoding for $\binom{[n]}{m}$ for particular m (encoding length is random variable; decoder always succeeds)
- any such encoding scheme needs $\geq \lg \binom{n}{m}=\Omega(m \log (n / m))$ bits in expectation \Longrightarrow lower bound for \mathcal{P}
- Notation:
- E: encoder
- D: decoder
- Alice: $1^{\text {st }}$ player in supposed efficient protocol \mathcal{P} for $\mathbf{U R}^{\text {C,+ }}$
- Bob: $2^{\text {nd }}$ player in supposed efficient protocol \mathcal{P} for $\mathbf{U R}^{\subset,+}$
> S: subset of $[n],|S|=m$, to be encoded
- $1_{S} \in\{0,1\}^{n}$ is indicator vector of S
- The + in UR ${ }^{\text {C,+ }}$ will mean E / D both know m (not a big deal: otherwise E could write m down)

Simple lower bound

$E(S)$ is Alice's message $M \in\{0,1\}^{s}$ to Bob on input $x=\mathbf{1}_{S}$.

Simple lower bound

$E(S)$ is Alice's message $M \in\{0,1\}^{s}$ to Bob on input $x=\mathbf{1}_{S}$.

1: procedure $D(M)$
2: $\quad T \leftarrow \emptyset$
3: \quad for $r=1, \ldots, m$ do
Let i be Bob's output upon receiving message M from
Alice when Bob's input is $\mathbf{1}_{T}$
5: $\quad T \leftarrow T \cup\{i\}$
6: end for
7: return T
8: end procedure

Simple lower bound

$E(S)$ is Alice's message $M \in\{0,1\}^{s}$ to Bob on input $x=\mathbf{1}_{S}$.

1: procedure $D(M)$
2: $\quad T \leftarrow \emptyset$
3: \quad for $r=1, \ldots, m$ do
4: Let i be Bob's output upon receiving message M from
Alice when Bob's input is $\mathbf{1}_{T}$
5: $\quad T \leftarrow T \cup\{i\}$
6: end for
7: return T
8: end procedure
*This is, hopefully, a Monte Carlo encoding/decoding scheme Want $\mathbb{P}(T=S)$ to be large (at least $1 / 2$, say)

(Wrong) Analysis: take 1

- Original failure probability of \mathcal{P} is δ
\Longrightarrow failure probability of decoder is $\delta m<1 / 2$ for $\delta<\frac{1}{2 m}$

(Wrong) Analysis: take 1

- Original failure probability of \mathcal{P} is δ
\Longrightarrow failure probability of decoder is $\delta m<1 / 2$ for $\delta<\frac{1}{2 m}$
\Longrightarrow can set $m=n / 2$ and get $s=\Omega(n)$ for $\delta<1 / n$

(Wrong) Analysis: take 1

- Original failure probability of \mathcal{P} is δ
\Longrightarrow failure probability of decoder is $\delta m<1 / 2$ for $\delta<\frac{1}{2 m}$
\Longrightarrow can set $m=n / 2$ and get $s=\Omega(n)$ for $\delta<1 / n$
- Problem: There's an $O\left(\log ^{3} n\right)$ upper bound for $\delta=\frac{1}{\text { poly }(n)}$ (Alice sends memory of ℓ_{0}-sampler sketch to Bob, run on 1_{S})

(Wrong) Analysis: take 1

- Original failure probability of \mathcal{P} is δ \Longrightarrow failure probability of decoder is $\delta m<1 / 2$ for $\delta<\frac{1}{2 m}$ \Longrightarrow can set $m=n / 2$ and get $s=\Omega(n)$ for $\delta<1 / n$
- Problem: There's an $O\left(\log ^{3} n\right)$ upper bound for $\delta=\frac{1}{\text { poly(n) }}$ (Alice sends memory of ℓ_{0}-sampler sketch to Bob, run on 1_{S})
- Problem is even worse: $E(S)$ could have first applied error-correcting code to 1_{S} to obtain $S^{\prime} \in[\Theta(n)]$, then Bob could recover S with good probability even for δ a constant! But for constant δ, there's $O\left(\log ^{2} n\right)$ upper bound for $\mathbf{U R} \mathbf{R}^{\text {C, }}$.

(Wrong) Analysis: take 1

- Original failure probability of \mathcal{P} is δ \Longrightarrow failure probability of decoder is $\delta m<1 / 2$ for $\delta<\frac{1}{2 m}$ \Longrightarrow can set $m=n / 2$ and get $s=\Omega(n)$ for $\delta<1 / n$
- Problem: There's an $O\left(\log ^{3} n\right)$ upper bound for $\delta=\frac{1}{\text { poly(n) }}$ (Alice sends memory of ℓ_{0}-sampler sketch to Bob, run on 1_{S})
- Problem is even worse: $E(S)$ could have first applied error-correcting code to 1_{S} to obtain $S^{\prime} \in[\Theta(n)]$, then Bob could recover S with good probability even for δ a constant! But for constant δ, there's $O\left(\log ^{2} n\right)$ upper bound for $\mathbf{U R} \mathbf{R}^{\subset,+}$.
- What went wrong here?

(Wrong) Analysis: take 1

- Original failure probability of \mathcal{P} is δ \Longrightarrow failure probability of decoder is $\delta m<1 / 2$ for $\delta<\frac{1}{2 m}$ \Longrightarrow can set $m=n / 2$ and get $s=\Omega(n)$ for $\delta<1 / n$
- Problem: There's an $O\left(\log ^{3} n\right)$ upper bound for $\delta=\frac{1}{\text { poly(n) }}$ (Alice sends memory of ℓ_{0}-sampler sketch to Bob, run on 1_{S})
- Problem is even worse: $E(S)$ could have first applied error-correcting code to 1_{S} to obtain $S^{\prime} \in[\Theta(n)]$, then Bob could recover S with good probability even for δ a constant! But for constant δ, there's $O\left(\log ^{2} n\right)$ upper bound for $\mathbf{U R} \mathbf{R}^{C,+}$.
- What went wrong here?
- Adaptivity!!!
- Correctness of \mathcal{P} says $\forall x, y, \mathbb{P}(\mathcal{P}$ succeeds on $x, y) \geq 1-\delta$. Bob not allowed to choose y based on \mathcal{P} 's random coins.

Correct Analysis

- Fix S and define event $\mathcal{E}_{T}: \mathcal{P}$ succeeds when $x=\mathbf{1}_{S}, y=\mathbf{1}_{T}$.

Correct Analysis

- Fix S and define event $\mathcal{E}_{T}: \mathcal{P}$ succeeds when $x=\mathbf{1}_{S}, y=\mathbf{1}_{T}$.
- If $\bigcap_{T \subset \subseteq} \mathcal{E}_{T}$ occurs, then decoder succeeds.

Correct Analysis

- Fix S and define event $\mathcal{E}_{T}: \mathcal{P}$ succeeds when $x=\mathbf{1}_{S}, y=\mathbf{1}_{T}$.
- If $\bigcap_{T \subseteq S} \mathcal{E}_{T}$ occurs, then decoder succeeds.

$$
\mathbb{P}\left(\neg\left(\bigcap_{T \subsetneq S} \mathcal{E}_{T}\right)\right)=\mathbb{P}\left(\bigcup_{T \subsetneq S} \overline{\mathcal{E}_{T}}\right)<\delta 2^{m}
$$

set $m=\lfloor\lg (1 / \delta)\rfloor-1$, so decoder succeeds w.p. $>1 / 2$

Correct Analysis

- Fix S and define event $\mathcal{E}_{T}: \mathcal{P}$ succeeds when $x=\mathbf{1}_{S}, y=\mathbf{1}_{T}$.
- If $\bigcap_{T \subseteq S} \mathcal{E}_{T}$ occurs, then decoder succeeds.

$$
\mathbb{P}\left(\neg\left(\bigcap_{T \subsetneq S} \mathcal{E}_{T}\right)\right)=\mathbb{P}\left(\bigcup_{T \subsetneq S} \overline{\mathcal{E}_{T}}\right)<\delta 2^{m}
$$

set $m=\lfloor\lg (1 / \delta)\rfloor-1$, so decoder succeeds w.p. $>1 / 2$
$\downarrow \Longrightarrow s=|M|=\Omega(m \log (n / m))=\Omega\left(\log (1 / \delta) \log \frac{n}{\log (1 / \delta)}\right)$

Correct Analysis

- Fix S and define event $\mathcal{E}_{T}: \mathcal{P}$ succeeds when $x=\mathbf{1}_{S}, y=\mathbf{1}_{T}$.
- If $\bigcap_{T \subsetneq S} \mathcal{E}_{T}$ occurs, then decoder succeeds.

$$
\mathbb{P}\left(\neg\left(\bigcap_{T \subsetneq S} \mathcal{E}_{T}\right)\right)=\mathbb{P}\left(\bigcup_{T \subsetneq S} \overline{\mathcal{E}_{T}}\right)<\delta 2^{m}
$$

set $m=\lfloor\lg (1 / \delta)\rfloor-1$, so decoder succeeds w.p. $>1 / 2$
$\downarrow \Longrightarrow s=|M|=\Omega(m \log (n / m))=\Omega\left(\log (1 / \delta) \log \frac{n}{\log (1 / \delta)}\right)$

- to get optimal lower bound, need another $\log \frac{n}{\log (1 / \delta)}$ factor

Optimal lower bound for $\mathbf{R}_{\delta}^{+, p u b}\left(\mathbf{U} \mathbf{R}^{\subset,+}\right)$

Moral of our work: it's ok to make adaptive queries to mechanism that are not independent of the randomness of the mechanism, if the amount of dependence can be controlled

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Moral of our work: it's ok to make adaptive queries to mechanism that are not independent of the randomness of the mechanism, if the amount of dependence can be controlled

Lemma [NPW'17]: Consider $f:\{0,1\}^{b} \times\{0,1\}^{q} \rightarrow\{0,1\}$ and $X \in\{0,1\}^{b}$ uniformly random. If
$\forall y \in\{0,1\}^{q}, \mathbb{P}(f(X, y)=1) \leq \delta$ where $0<\delta<1$, then for any random variable Y supported on $\{0,1\}^{q}$,

$$
\mathbb{P}(f(X, Y)=1) \leq \frac{I(X ; Y)+1}{\log \frac{1}{\delta}}
$$

where $I(X ; Y)$ is the mutual information between X and Y.

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Moral of our work: it's ok to make adaptive queries to mechanism that are not independent of the randomness of the mechanism, if the amount of dependence can be controlled

Lemma [NPW'17]: Consider $f:\{0,1\}^{b} \times\{0,1\}^{a} \rightarrow\{0,1\}$ and $X \in\{0,1\}^{b}$ uniformly random. If $\forall y \in\{0,1\}^{q}, \mathbb{P}(f(X, y)=1) \leq \delta$ where $0<\delta<1$, then for any random variable Y supported on $\{0,1\}^{q}$,

$$
\mathbb{P}(f(X, Y)=1) \leq \frac{I(X ; Y)+1}{\log \frac{1}{\delta}}
$$

where $I(X ; Y)$ is the mutual information between X and Y.
Interpretation: Fix input x to Alice. X is internal randomness of \mathcal{P}, and $f(x, y)$ is 1 iff \mathcal{P} is incorrect when Bob has input y.

Adaptivity lemma

Lemma [NPW'17]: Consider $f:\{0,1\}^{b} \times\{0,1\}^{q} \rightarrow\{0,1\}$ and $X \in\{0,1\}^{b}$ uniformly random. If $\forall y \in\{0,1\}^{q}, \mathbb{P}(f(X, y)=1) \leq \delta$ where $0<\delta<1$, then for any random variable Y supported on $\{0,1\}^{q}$,

$$
\mathbb{P}(f(X, Y)=1) \leq \frac{I(X ; Y)+1}{\log \frac{1}{\delta}},
$$

where $I(X ; Y)$ is the mutual information between X and Y.

Adaptivity lemma

Lemma [NPW'17]: Consider $f:\{0,1\}^{b} \times\{0,1\}^{q} \rightarrow\{0,1\}$ and $X \in\{0,1\}^{b}$ uniformly random. If $\forall y \in\{0,1\}^{q}, \mathbb{P}(f(X, y)=1) \leq \delta$ where $0<\delta<1$, then for any random variable Y supported on $\{0,1\}^{q}$,

$$
\mathbb{P}(f(X, Y)=1) \leq \frac{I(X ; Y)+1}{\log \frac{1}{\delta}},
$$

where $I(X ; Y)$ is the mutual information between X and Y.
Is the above lemma tight?
Yes. $x, y \in[n], X$ is uniform. $f(x, y)=1$ iff $x=y . \delta=\frac{1}{n}$.

Adaptivity lemma

Lemma [NPW'17]: Consider $f:\{0,1\}^{b} \times\{0,1\}^{q} \rightarrow\{0,1\}$ and $X \in\{0,1\}^{b}$ uniformly random. If $\forall y \in\{0,1\}^{q}, \mathbb{P}(f(X, y)=1) \leq \delta$ where $0<\delta<1$, then for any random variable Y supported on $\{0,1\}^{q}$,

$$
\mathbb{P}(f(X, Y)=1) \leq \frac{I(X ; Y)+1}{\log \frac{1}{\delta}},
$$

where $I(X ; Y)$ is the mutual information between X and Y.
Is the above lemma tight?
Yes. $x, y \in[n], X$ is uniform. $f(x, y)=1$ iff $x=y$. $\delta=\frac{1}{n}$.

- consider this Y : equals X w.p. $\frac{t}{\log n}$, and otherwise is uniform

Adaptivity lemma

Lemma [NPW'17]: Consider $f:\{0,1\}^{b} \times\{0,1\}^{q} \rightarrow\{0,1\}$ and $X \in\{0,1\}^{b}$ uniformly random. If $\forall y \in\{0,1\}^{q}, \mathbb{P}(f(X, y)=1) \leq \delta$ where $0<\delta<1$, then for any random variable Y supported on $\{0,1\}^{q}$,

$$
\mathbb{P}(f(X, Y)=1) \leq \frac{I(X ; Y)+1}{\log \frac{1}{\delta}},
$$

where $I(X ; Y)$ is the mutual information between X and Y.
Is the above lemma tight?
Yes. $x, y \in[n], X$ is uniform. $f(x, y)=1$ iff $x=y$. $\delta=\frac{1}{n}$.

- consider this Y : equals X w.p. $\frac{t}{\log n}$, and otherwise is uniform
- $I(X ; Y)=t$

Adaptivity lemma

Lemma [NPW'17]: Consider $f:\{0,1\}^{b} \times\{0,1\}^{q} \rightarrow\{0,1\}$ and $X \in\{0,1\}^{b}$ uniformly random. If $\forall y \in\{0,1\}^{q}, \mathbb{P}(f(X, y)=1) \leq \delta$ where $0<\delta<1$, then for any random variable Y supported on $\{0,1\}^{q}$,

$$
\mathbb{P}(f(X, Y)=1) \leq \frac{I(X ; Y)+1}{\log \frac{1}{\delta}}
$$

where $I(X ; Y)$ is the mutual information between X and Y.
Is the above lemma tight?
Yes. $x, y \in[n], X$ is uniform. $f(x, y)=1$ iff $x=y$. $\delta=\frac{1}{n}$.

- consider this Y : equals X w.p. $\frac{t}{\log n}$, and otherwise is uniform
> $I(X ; Y)=t$
$\triangleright \mathbb{P}(f(X, Y)=1)=\frac{t}{\log n} \cdot 1+\left(1-\frac{t}{\log n}\right) \cdot \frac{1}{n} \approx \frac{t}{\log n}$

Rest of talk

1. Proving the lemma (short).
2. Using the lemma to lower bound $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R}^{\complement,+}\right)$.

Rest of talk

1. Proving the lemma (short).
2. Using the lemma to lower bound $\mathbf{R}_{\delta}^{, \rightarrow, p u b}\left(\mathbf{U R}^{\subset,+}\right)$.

Proof of lemma

Lemma: $\mathbb{P}(f(X, Y)=1) \leq \frac{I(X ; Y)+1}{\log \frac{1}{\delta}}$

Proof of lemma

Lemma: $\mathbb{P}(f(X, Y)=1) \leq \frac{I(X ; Y)+1}{\log \frac{1}{\delta}}$

- Equivalent to prove $I(X ; Y) \geq(\mathbb{E} f(X, Y)) \cdot \log \frac{1}{\delta}-1$
- $I(X ; Y)=H(X)-H(X \mid Y)=b-H(X \mid Y)$.

Want to upper bound $H(X \mid Y)$.

Proof of lemma

Lemma: $\mathbb{P}(f(X, Y)=1) \leq \frac{I(X ; Y)+1}{\log \frac{1}{\delta}}$

- Equivalent to prove $I(X ; Y) \geq(\mathbb{E} f(X, Y)) \cdot \log \frac{1}{\delta}-1$
- $I(X ; Y)=H(X)-H(X \mid Y)=b-H(X \mid Y)$.

Want to upper bound $H(X \mid Y)$.

- Consider communication problem: Alice gets X, Y, Bob only gets Y. Expected number of bits Alice needs to send Bob so he can recover X with probability 1 is exactly $H(X \mid Y)$.

Proof of lemma

Lemma: $\mathbb{P}(f(X, Y)=1) \leq \frac{I(X ; Y)+1}{\log \frac{1}{\delta}}$

- Equivalent to prove $I(X ; Y) \geq(\mathbb{E} f(X, Y)) \cdot \log \frac{1}{\delta}-1$
- $I(X ; Y)=H(X)-H(X \mid Y)=b-H(X \mid Y)$.

Want to upper bound $H(X \mid Y)$.

- Consider communication problem: Alice gets X, Y, Bob only gets Y. Expected number of bits Alice needs to send Bob so he can recover X with probability 1 is exactly $H(X \mid Y)$.
- A cheap protocol: Alice sends $f(X, Y)(1$ bit). If $f(X, Y)=0$, also sends all of $X(b$ bits). Else sends index of X in $\{x: f(x, Y)=1\}\left(\log \left(\delta 2^{b}\right)=b-\log \frac{1}{\delta}\right.$ bits $)$.

Proof of lemma

Lemma: $\mathbb{P}(f(X, Y)=1) \leq \frac{I(X ; Y)+1}{\log \frac{1}{\delta}}$

- Equivalent to prove $I(X ; Y) \geq(\mathbb{E} f(X, Y)) \cdot \log \frac{1}{\delta}-1$
- $I(X ; Y)=H(X)-H(X \mid Y)=b-H(X \mid Y)$.

Want to upper bound $H(X \mid Y)$.

- Consider communication problem: Alice gets X, Y, Bob only gets Y. Expected number of bits Alice needs to send Bob so he can recover X with probability 1 is exactly $H(X \mid Y)$.
- A cheap protocol: Alice sends $f(X, Y)(1$ bit). If $f(X, Y)=0$, also sends all of X (b bits). Else sends index of X in $\{x: f(x, Y)=1\}\left(\log \left(\delta 2^{b}\right)=b-\log \frac{1}{\delta}\right.$ bits $)$.
$\Longrightarrow H(X \mid Y) \leq 1+b-(\mathbb{E} f(X, Y)) \cdot \log \frac{1}{\delta}$ as desired.

Rest of talk

1. Proving the lemma (short).
2. Using the lemma to lower bound $\mathbf{R}_{\delta}^{, \rightarrow, p u b}\left(\mathbf{U R}^{\subset,+}\right)$.

Rest of talk

1. Proving the lemma (short).
2. Using the lemma to lower bound $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R}^{\complement,+}\right)$.

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R}^{\subset,+}\right)$

- Our approach: Give up on D recovering all of S from M.
- D will recover subset $A \subset S, \mathbb{E}|A|=\Theta\left(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}}\right)$ from M. $E(S)$ then is the concatenation of M, together with the elements $B=S \backslash A$ explicitly written down $\left(\log \binom{n}{|B|}\right.$ bits).

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R}^{\subset,+}\right)$

- Our approach: Give up on D recovering all of S from M.
- D will recover subset $A \subset S, \mathbb{E}|A|=\Theta\left(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}}\right)$ from M. $E(S)$ then is the concatenation of M, together with the elements $B=S \backslash A$ explicitly written down ($\log \binom{n}{|B|}$ bits).
- A comes from $R=\Theta\left(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}}\right)$ iterations in decoder. Will have \mathcal{P} succeeding in $\frac{R}{2}$ iterations in expectation.

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

- Our approach: Give up on D recovering all of S from M.
- D will recover subset $A \subset S, \mathbb{E}|A|=\Theta\left(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}}\right)$ from M. $E(S)$ then is the concatenation of M, together with the elements $B=S \backslash A$ explicitly written down ($\log \binom{n}{|B|}$ bits).
- A comes from $R=\Theta\left(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}}\right)$ iterations in decoder. Will have \mathcal{P} succeeding in $\frac{R}{2}$ iterations in expectation.
- In light of Lemma, D will pretend to be Bob in each of the R iterations such that for all $j \in[R], y_{j}$ in iteration j has mutual information $\leq \frac{1}{2} \log \frac{1}{\delta}-1$ with the randomness used by \mathcal{P}.

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

- Our approach: Give up on D recovering all of S from M.
- D will recover subset $A \subset S, \mathbb{E}|A|=\Theta\left(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}}\right)$ from M. $E(S)$ then is the concatenation of M, together with the elements $B=S \backslash A$ explicitly written down $\left(\log \binom{n}{|B|}\right.$ bits).
- A comes from $R=\Theta\left(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}}\right)$ iterations in decoder. Will have \mathcal{P} succeeding in $\frac{R}{2}$ iterations in expectation.
- In light of Lemma, D will pretend to be Bob in each of the R iterations such that for all $j \in[R], y_{j}$ in iteration j has mutual information $\leq \frac{1}{2} \log \frac{1}{\delta}-1$ with the randomness used by \mathcal{P}.
- After iteration j, D randomly adds t_{j} elements of B to T to dilute info about elements of S recovered from M so far.

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

- Our approach: Give up on D recovering all of S from M.
- D will recover subset $A \subset S, \mathbb{E}|A|=\Theta\left(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}}\right)$ from M. $E(S)$ then is the concatenation of M, together with the elements $B=S \backslash A$ explicitly written down $\left(\log \binom{n}{|B|}\right.$ bits).
- A comes from $R=\Theta\left(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}}\right)$ iterations in decoder. Will have \mathcal{P} succeeding in $\frac{R}{2}$ iterations in expectation.
- In light of Lemma, D will pretend to be Bob in each of the R iterations such that for all $j \in[R], y_{j}$ in iteration j has mutual information $\leq \frac{1}{2} \log \frac{1}{\delta}-1$ with the randomness used by \mathcal{P}.
- After iteration j, D randomly adds t_{j} elements of B to T to dilute info about elements of S recovered from M so far.
- Need t_{j} big enough to get enough information dilution. This forces $R=O\left(\log \frac{1}{\delta} \log \frac{m}{\log \frac{1}{\delta}}\right)$.

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

- Our approach: Give up on D recovering all of S from M.
- D will recover subset $A \subset S, \mathbb{E}|A|=\Theta\left(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}}\right)$ from M. $E(S)$ then is the concatenation of M, together with the elements $B=S \backslash A$ explicitly written down $\left(\log \binom{n}{|B|}\right.$ bits).
- A comes from $R=\Theta\left(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}}\right)$ iterations in decoder. Will have \mathcal{P} succeeding in $\frac{R}{2}$ iterations in expectation.
- In light of Lemma, D will pretend to be Bob in each of the R iterations such that for all $j \in[R], y_{j}$ in iteration j has mutual information $\leq \frac{1}{2} \log \frac{1}{\delta}-1$ with the randomness used by \mathcal{P}.
- After iteration j, D randomly adds t_{j} elements of B to T to dilute info about elements of S recovered from M so far.
- Need t_{j} big enough to get enough information dilution. This forces $R=O\left(\log \frac{1}{\delta} \log \frac{m}{\log \frac{1}{\delta}}\right)$.
- Will get lower bound $|M|=\Omega\left(R \lg \frac{n}{m}\right)=\Omega\left(\lg \frac{1}{\delta} \lg \frac{m}{\lg \frac{1}{\delta}} \lg \frac{n}{m}\right)$ set $m=\sqrt{n \log \frac{1}{\delta}}$

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Variables shared by E and D.

```
1: \(m \leftarrow\left\lfloor\sqrt{n \log \frac{1}{\delta}}\right\rfloor\)
2: \(K \leftarrow\left\lfloor\frac{1}{16} \log \frac{1}{\delta}\right\rfloor\)
3: \(R \leftarrow\lfloor K \log (m / 4 K)\rfloor\)
4: for \(r=0, \ldots, R\) do
5: \(\quad n_{r} \leftarrow\left\lfloor m \cdot 2^{-\frac{r}{K}}\right\rfloor \quad \triangleright\left|S_{r}\right|=n_{r}\), and \(\forall r n_{r}-n_{r+1} \geq 2\)
6: end for
7: \(\pi\) is a random permutation on \([n]\)
```


Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\subset,+}\right)$

Variables shared by E and D.

```
    1: \(m \leftarrow\left\lfloor\sqrt{n \log \frac{1}{\delta}}\right\rfloor\)
    2: \(K \leftarrow\left\lfloor\frac{1}{16} \log \frac{1}{\delta}\right\rfloor\)
    3: \(R \leftarrow\lfloor K \log (m / 4 K)\rfloor\)
    4: for \(r=0, \ldots, R\) do
    5: \(\quad n_{r} \leftarrow\left\lfloor m \cdot 2^{-\frac{r}{K}}\right\rfloor \quad \triangleright\left|S_{r}\right|=n_{r}\), and \(\forall r n_{r}-n_{r+1} \geq 2\)
    6: end for
    7: \(\pi\) is a random permutation on [ \(n\) ]
```

n_{j} is such that after j iterations, D has already recovered $m-n_{j}$ elements of $S\left(S_{j},\left|S_{j}\right|=n_{j}\right.$, remains to be recovered)

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Decoding algorithm to recover $S \subset[n],|S|=m$

1: procedure $D(M, B, b)$
$\triangleright M$ is Alice $\left(\mathbf{1}_{S}\right)$
$\triangleright b \in\{0,1\}^{R}$ indicates rounds in which Bob succeeds
$\triangleright B$ contains all elements of S that D doesn't recover via M

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Decoding algorithm to recover $S \subset[n],|S|=m$
$\begin{array}{ll}\text { 1: procedure } D(M, B, b) \\ & \triangleright M \text { is Alice }\left(\mathbf{1}_{S}\right) \\ & \triangleright b \in\{0,1\}^{R} \text { indicates rounds in which Bob succeeds } \\ & \triangleright B \text { contains all elements of } S \text { that } D \text { doesn't recover via } M \\ \text { 2: } & A \leftarrow \emptyset \quad \\ \text { 3: } & T_{0} \leftarrow \emptyset \\ & \\ & \quad \text { the subset of } S \text { we recover just from } M\end{array}$

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Decoding algorithm to recover $S \subset[n],|S|=m$

```
    1: procedure \(D(M, B, b)\)
        \(\triangleright M\) is Alice \(\left(\mathbf{1}_{S}\right)\)
    \(\triangleright b \in\{0,1\}^{R}\) indicates rounds in which Bob succeeds
    \(\triangleright B\) contains all elements of \(S\) that \(D\) doesn't recover via \(M\)
2: \(A \leftarrow \emptyset \quad \triangleright\) the subset of \(S\) we recover just from \(M\)
3: \(T_{0} \leftarrow \emptyset \quad \triangleright\) subset of \(S\) we've built up so far
4: for \(r=1, \ldots, R\) do \(\triangleright\) each iteration tries to recover 1 elt via \(M\)
5: \(\quad T_{r} \leftarrow T_{r-1}\)
```


Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Decoding algorithm to recover $S \subset[n],|S|=m$

```
1: procedure \(D(M, B, b)\)
    \(\triangleright M\) is Alice \(\left(\mathbf{1}_{S}\right)\)
    \(\triangleright b \in\{0,1\}^{R}\) indicates rounds in which Bob succeeds
    \(\triangleright B\) contains all elements of \(S\) that \(D\) doesn't recover via \(M\)
2: \(A \leftarrow \emptyset \quad \triangleright\) the subset of \(S\) we recover just from \(M\)
3: \(\quad T_{0} \leftarrow \emptyset \quad \triangleright\) subset of \(S\) we've built up so far
4: for \(r=1, \ldots, R\) do \(\triangleright\) each iteration tries to recover 1 elt via \(M\)
5: \(\quad T_{r} \leftarrow T_{r-1}\)
6: if \(b_{r}=1\) then \(\triangleright\) this means Bob succeeds in round \(r\)
```


Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Decoding algorithm to recover $S \subset[n],|S|=m$

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Decoding algorithm to recover $S \subset[n],|S|=m$

1: procedure $D(M, B, b)$	
$\triangleright M$ is Alice (1 $\mathbf{1}_{S}$)	
	$\triangleright b \in\{0,1\}^{R}$ indicates rounds in which Bob succeeds
$\triangleright B$ contains all elements of S that D doesn't recover via M	
2 :	$A \leftarrow \emptyset \quad \triangleright$ the subset of S we recover just from M
3:	$T_{0} \leftarrow \emptyset \quad \triangleright$ subset of S we've built up so far
4:	for $r=1, \ldots, R$ do \triangleright each iteration tries to recover 1 elt via M
5:	$T_{r} \leftarrow T_{r-1}$
6:	if $b_{r}=1$ then $\quad \triangleright$ this means Bob succeeds in round r
7:	$S_{r} \leftarrow \operatorname{Bob}\left(M, 1_{T_{r-1}}\right) \quad \triangleright$ Invariant: $T_{r}=S \backslash S_{r}$
8:	$A \leftarrow A \cup\left\{s_{r}\right\}, T_{r} \leftarrow T_{r} \cup\left\{s_{r}\right\}$
9:	end if
10:	Insert $m-n_{r}-\left\|T_{r}\right\|$ items from $B \backslash T_{r}$ into T_{r} with smallest π_{i}
11	\triangleright "Differential Privacy" step. Still n_{r} elements left to recover. end for

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Decoding algorithm to recover $S \subset[n],|S|=m$

```
    1: procedure \(D(M, B, b)\)
    \(\triangleright M\) is Alice \(\left(\mathbf{1}_{S}\right)\)
    \(\triangleright b \in\{0,1\}^{R}\) indicates rounds in which Bob succeeds
    \(\triangleright B\) contains all elements of \(S\) that \(D\) doesn't recover via \(M\)
2: \(A \leftarrow \emptyset \quad \triangleright\) the subset of \(S\) we recover just from \(M\)
3: \(\quad T_{0} \leftarrow \emptyset \quad \triangleright\) subset of \(S\) we've built up so far
4: for \(r=1, \ldots, R\) do \(\triangleright\) each iteration tries to recover 1 elt via \(M\)
5: \(\quad T_{r} \leftarrow T_{r-1}\)
6: \(\quad\) if \(b_{r}=1\) then
\(s_{r} \leftarrow \operatorname{Bob}\left(M, 1_{T_{r-1}}\right) \quad \triangleright\) Invariant: \(T_{r}=S \backslash S_{r}\)
\(A \leftarrow A \cup\left\{s_{r}\right\}, T_{r} \leftarrow T_{r} \cup\left\{s_{r}\right\}\)
    end if
    Insert \(m-n_{r}-\left|T_{r}\right|\) items from \(B \backslash T_{r}\) into \(T_{r}\) with smallest \(\pi_{i}\)
    \(\triangleright\) "Differential Privacy" step. Still \(n_{r}\) elements left to recover.
11: end for
12: \(\quad\) return \(B \cup A\)
13: end procedure
```


Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Encoding algorithm for $S \subset[n],|S|=m$

1:	procedure $E(S)$	
2:	$M \leftarrow \operatorname{Alice}\left(\mathbf{1}_{S}\right)$	
3:	$A \leftarrow \emptyset$	\triangleright the set D recovers just from M

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Encoding algorithm for $S \subset[n],|S|=m$

1:	procedure $E(S)$	
2:	$M \leftarrow \operatorname{Alice}\left(\mathbf{1}_{S}\right)$	
3:	$A \leftarrow \emptyset$	
4:	$S_{0} \leftarrow S \quad \triangleright$ the set D recovers just from M	
		\triangleright at end of round r, D still needs to recover S_{r}

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Encoding algorithm for $S \subset[n],|S|=m$

1: procedure $E(S)$	
2:	$M \leftarrow \operatorname{Alice}\left(\mathbf{1}_{S}\right)$
3:	$A \leftarrow \emptyset \quad \triangleright$ at end of round r, D still needs to recover S_{r}
4:	$S_{0} \leftarrow S \quad$
5:	for $r=1, \ldots, R$ do
6:	$s_{r} \leftarrow \operatorname{Bob}\left(M, \mathbf{1}_{\left.S \backslash S_{r-1}\right)}\right)$

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Encoding algorithm for $S \subset[n],|S|=m$

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R}^{\complement,+}\right)$

Encoding algorithm for $S \subset[n],|S|=m$

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R}^{\complement,+}\right)$

Encoding algorithm for $S \subset[n],|S|=m$

| 1: procedure $E(S)$ | |
| :--- | :---: | :--- |
| 2: | $M \leftarrow \operatorname{Alice}\left(\mathbf{1}_{S}\right)$ |
| 3: | $A \leftarrow \emptyset \quad \triangleright$ at end of round r, D still needs to recover S_{r} |
| 4: | $S_{0} \leftarrow S \quad \triangleright$ the set D recovers just from M |
| 5: | for $r=1, \ldots, R$ do |
| 6: | $S_{r} \leftarrow \operatorname{Bob}\left(M, \mathbf{1}_{S} \backslash S_{r-1}\right)$ |
| 7: | $S_{r} \leftarrow S_{r-1}$ |
| 8: | if $s_{r} \in S_{r-1}$ then $\quad \triangleright s_{r} \stackrel{?}{\in} S_{r-1}$ found in round r |
| 9: | $b_{r} \leftarrow 1 \quad \triangleright b \in\{0,1\}^{R}$ indicating which rounds succeed |
| 10: | $A \leftarrow A \cup\left\{s_{r}\right\}, S_{r} \leftarrow S_{r} \backslash\left\{s_{r}\right\}$ |
| 11: | else |
| 12: | $b_{r} \leftarrow 0$ |
| 13: | end if |

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R}^{\complement,+}\right)$

Encoding algorithm for $S \subset[n],|S|=m$

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow, p u b}\left(\mathbf{U R} \mathbf{R}^{\complement,+}\right)$

Encoding algorithm for $S \subset[n],|S|=m$

```
1: procedure \(E(S)\)
2: \(\quad M \leftarrow\) Alice \(\left(\mathbf{1}_{S}\right)\)
3: \(A \leftarrow \emptyset \quad \triangleright\) the set \(D\) recovers just from \(M\)
4: \(\quad S_{0} \leftarrow S \quad \triangleright\) at end of round \(r, D\) still needs to recover \(S_{r}\)
5: \(\quad\) for \(r=1, \ldots, R\) do
6: \(\quad s_{r} \leftarrow \operatorname{Bob}\left(M, \mathbf{1}_{S \backslash S_{r-1}}\right)\)
                                    \(\triangleright s_{r} \stackrel{?}{\in} S_{r-1}\) found in round \(r\)
    \(S_{r} \leftarrow S_{r-1}\)
    if \(s_{r} \in S_{r-1}\) then \(\triangleright\) i.e. if \(s_{r}\) is a valid sample
        \(b_{r} \leftarrow 1 \quad \triangleright b \in\{0,1\}^{R}\) indicating which rounds succeed
        \(A \leftarrow A \cup\left\{s_{r}\right\}, S_{r} \leftarrow S_{r} \backslash\left\{s_{r}\right\}\)
        else
        \(b_{r} \leftarrow 0\)
        end if
        remove \(\left|S_{r}\right|-n_{r}\) elts from \(S_{r}\) with smallest \(\pi_{i} \triangleright\) now \(\left|S_{r}\right|=n_{r}\)
        end for
    return \((M, S \backslash A, b)\)
    17: end procedure
```


Analysis

$$
\begin{aligned}
& \text { Recall } K=\left\lfloor\frac{1}{16} \log \frac{1}{\delta}\right\rfloor . \text { Note } n_{r}=2^{-r / K} m \approx(1-1 / K)^{r} m . \\
& X \text { is randomness used by } \mathbf{U R}^{C,+} \text { protocol. }
\end{aligned}
$$

Analysis

Recall $K=\left\lfloor\frac{1}{16} \log \frac{1}{\delta}\right\rfloor$. Note $n_{r}=2^{-r / K} m \approx(1-1 / K)^{r} m$. X is randomness used by $\mathrm{UR}^{\mathrm{C},+}$ protocol.

Lemma: If in each round we add a random $1 / K$-fraction of the remaining elements of S to T_{r}, then for all $r \in[R], I\left(X ; S_{r}\right) \leq 6 K$.

Analysis

Recall $K=\left\lfloor\frac{1}{16} \log \frac{1}{\delta}\right\rfloor$. Note $n_{r}=2^{-r / K} m \approx(1-1 / K)^{r} m$. X is randomness used by $\mathrm{UR}^{\mathrm{C},+}$ protocol.

Lemma: If in each round we add a random $1 / K$-fraction of the remaining elements of S to T_{r}, then for all $r \in[R], I\left(X ; S_{r}\right) \leq 6 K$. Proof:

- $I\left(X ; S_{r}\right)=H\left(S_{r}\right)-H\left(S_{r} \mid X\right)$

Analysis

Recall $K=\left\lfloor\frac{1}{16} \log \frac{1}{\delta}\right\rfloor$. Note $n_{r}=2^{-r / K} m \approx(1-1 / K)^{r} m$. X is randomness used by $\mathbf{U R}^{\text {C,+ }}$ protocol.

Lemma: If in each round we add a random $1 / K$-fraction of the remaining elements of S to T_{r}, then for all $r \in[R], I\left(X ; S_{r}\right) \leq 6 K$. Proof:
> $I\left(X ; S_{r}\right)=H\left(S_{r}\right)-H\left(S_{r} \mid X\right)$

- $\left|S_{r}\right|=n_{r}$ and $|S|=m$, so $H\left(S_{r}\right) \leq \log \binom{m}{n_{r}}$

Analysis

Recall $K=\left\lfloor\frac{1}{16} \log \frac{1}{\delta}\right\rfloor$. Note $n_{r}=2^{-r / K} m \approx(1-1 / K)^{r} m$. X is randomness used by $\mathbf{U R}^{\text {C,+ }}$ protocol.

Lemma: If in each round we add a random $1 / K$-fraction of the remaining elements of S to T_{r}, then for all $r \in[R], I\left(X ; S_{r}\right) \leq 6 K$. Proof:
> $I\left(X ; S_{r}\right)=H\left(S_{r}\right)-H\left(S_{r} \mid X\right)$

- $\left|S_{r}\right|=n_{r}$ and $|S|=m$, so $H\left(S_{r}\right) \leq \log \binom{m}{n_{r}}$
- We show that for any $T \in\binom{S}{n_{r}}$ and x,

$$
\mathbb{P}\left(S_{r}=T \mid X=x\right) \leq p=\frac{2^{6 k r}}{\binom{m}{n_{r}}}
$$

Analysis

Recall $K=\left\lfloor\frac{1}{16} \log \frac{1}{\delta}\right\rfloor$. Note $n_{r}=2^{-r / K} m \approx(1-1 / K)^{r} m$. X is randomness used by $\mathbf{U R}^{\text {C,+ }}$ protocol.

Lemma: If in each round we add a random $1 / K$-fraction of the remaining elements of S to T_{r}, then for all $r \in[R], I\left(X ; S_{r}\right) \leq 6 K$. Proof:

- $I\left(X ; S_{r}\right)=H\left(S_{r}\right)-H\left(S_{r} \mid X\right)$
- $\left|S_{r}\right|=n_{r}$ and $|S|=m$, so $H\left(S_{r}\right) \leq \log \binom{m}{n_{r}}$
- We show that for any $T \in\binom{S}{n_{r}}$ and x,

$$
\begin{aligned}
& \mathbb{P}\left(S_{r}=T \mid X=x\right) \leq p=\frac{2^{6 K}}{\binom{m}{n_{r}}} \\
& \Longrightarrow H\left(S_{r} \mid X\right) \geq \log \frac{1}{p} \geq \log \binom{m}{n_{r}}-6 K
\end{aligned}
$$

Analysis

Recall $K=\left\lfloor\frac{1}{16} \log \frac{1}{\delta}\right\rfloor$. Note $n_{r}=2^{-r / K} m \approx(1-1 / K)^{r} m$. X is randomness used by $\mathrm{UR}^{\mathrm{C},+}$ protocol.

Lemma: If in each round we add a random $1 / K$-fraction of the remaining elements of S to T_{r}, then for all $r \in[R], I\left(X ; S_{r}\right) \leq 6 K$. Proof:

- $I\left(X ; S_{r}\right)=H\left(S_{r}\right)-H\left(S_{r} \mid X\right)$
- $\left|S_{r}\right|=n_{r}$ and $|S|=m$, so $H\left(S_{r}\right) \leq \log \binom{m}{n_{r}}$
- We show that for any $T \in\binom{S}{n_{r}}$ and x,

$$
\begin{aligned}
& \mathbb{P}\left(S_{r}=T \mid X=x\right) \leq p=\frac{2^{6 \kappa_{r}}}{\left(n_{r}^{m}\right)} \\
& \Longrightarrow H\left(S_{r} \mid X\right) \geq \log \frac{1}{p} \geq \log \binom{m}{n_{r}}-6 K
\end{aligned}
$$

Correctness of protocol then follows by adaptivity lemma.

Analysis

Recall $K=\left\lfloor\frac{1}{16} \log \frac{1}{\delta}\right\rfloor$. Note $n_{r}=2^{-r / K} m \approx(1-1 / K)^{r} m$. X is randomness used by $\mathrm{UR}^{\mathrm{C},+}$ protocol.

Lemma: If in each round we add a random $1 / K$-fraction of the remaining elements of S to T_{r}, then for all $r \in[R], I\left(X ; S_{r}\right) \leq 6 K$. Proof:

- $I\left(X ; S_{r}\right)=H\left(S_{r}\right)-H\left(S_{r} \mid X\right)$
- $\left|S_{r}\right|=n_{r}$ and $|S|=m$, so $H\left(S_{r}\right) \leq \log \binom{m}{n_{r}}$
- We show that for any $T \in\binom{S}{n_{r}}$ and x,

$$
\begin{aligned}
& \mathbb{P}\left(S_{r}=T \mid X=x\right) \leq p=\frac{2^{6 k_{r} / r^{\prime}}}{\left(\begin{array}{l}
m \\
n_{r}
\end{array}\right.} \\
& \Longrightarrow H\left(S_{r} \mid X\right) \geq \log \frac{1}{p} \geq \log \binom{m}{n_{r}}-6 K
\end{aligned}
$$

Correctness of protocol then follows by adaptivity lemma.
Note a " $1 / K$-fraction of what's left" requires at least K items left. Thus we stop when $2^{-R / K} m<K$, i.e. $R=\Theta(K \log (m / K))$.

The End

