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Turnstile streaming

I vector z ∈ Rn starts off as 0, updates “zi ← zi + ∆”, ∆ ∈ R

I data structure supporting various types of queries to z
I Assumptions and examples:

I Insertion-only: ∆ = 1 always
e.g. n is size of lexicon. Google search for word i causes
update to i , so zi is frequency of word i . Might want to find
frequent query words (“heavy hitters”).

I Strict turnstile: ∆ positive or negative, but ∀i zi ≥ 0 always
e.g. graph on N vertices, n =

(
N
2

)
. Edge insertion of e causes

ze ← ze + 1, and deletion has ∆ = −1. Never delete edges
that don’t already exist (no negative edge multiplicities).

I (General) turnstile: No additional assumptions
same as insertion-only example, but searches yesterday have
∆ = −1 and today have ∆ = 1. zi is then change in
frequency, now want to find words with large changes.
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Sampling in streams

I Early work on reservoir sampling: sample k items from
insertion-only stream using O(k log n) bits of memory.

attributed in [Knuth’81] to Alan G. Waterman

I solves `1-sampling in insertion-only:

for k = 1, P(i is the sampled item) = |zi |
‖z‖1

I What about (strict) turnstile? Other sampling distributions?
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Sampling in turnstile streams

`p-sampling

I pi =
|z|pi
‖z‖pp

I [Coppersmith, Kumar ’04] asked
whether `2 sampling is
possible in small space (would
lead to nearly space-optimal
algorithms for `p-norm
estimation for p > 2).

I First small-space solution in
[Monemizadeh, Woodruff ’10].

`0-sampling

I pi =

{
1
‖z‖0

, zi 6= 0

0, otherwise

I Originally asked about in
[Cormode, Muthu, Rozenbaum ’05]

and [Frahling, Indyk, Sohler ’05].

I Shown to be a useful primitive
for turnstile graph streaming
in [Ahn, Guha, McGregor ’10].



Sampling in turnstile streams

`p-sampling (0 < p < 2)
∗all space measured in bits

I [Monemizadeh, Woodruff ’10]: in poly(ε−1 log n) space, whp

sample has distribution within 1± ε of pi = |zi |p
‖z‖pp

I [Andoni, Krauthgamer, Indyk ’11]: constant failure probability,
O(ε−p log3 n) space for 1 ≤ p ≤ 2

I State-of-the-art. [Jowhari, Sağlam, Tardos ’11]:
O(ε−max{1,p} log(1/δ) log2 n) space for p 6= 1.
O(ε−1 log(1/ε) log(1/δ) log2 n) for p = 1.

for constant ε, space is O(log(1/δ) log2 n).
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Sampling in turnstile streams

`0-sampling
∗all space measured in bits

I [Frahling, Indyk, Sohler’05]: O(log3 n) space, whp success

I State-of-the-art. [Jowhari, Sağlam, Tardos ’11]: O(log(1/δ) log2 n)
space (w.p. δ can output anything, and w.p. 1− δ outputs
uniformly random element from support(z))

I In fact, [JST11] spits out min{‖z‖0,Θ(log(1/δ))} uniform
random elements from support, without replacement

I motivates studying `0-samplingk (have to output
min{k , ‖z‖0} samples from support, w/o replacement)

I [JST11] achieves space O(t log2 n) for `0-samplingk for
t = max{k, log(1/δ)}.
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Sampling in turnstile streams

`0-sampling
∗all space measured in bits

Since [Ahn, Guha, McGregor ’12a], used as a subroutine in
seemingly every known turnstile algorithm for dynamic graphs.

I connectivity [Ahn, Guha, McGregor ’12a]

I k-connectivity [Ahn, Guha, McGregor ’12a]

I bipartiteness [Ahn, Guha, McGregor ’12a]

I minimum spanning tree [Ahn, Guha, McGregor ’12a]

I subgraph counting [Ahn, Guha, McGregor ’12b]

I minimum cut [Ahn, Guha, McGregor ’12b]

I cut-sparsifiers [Ahn, Guha, McGregor ’12b]

I spanners [Ahn, Guha, McGregor ’12b]

I spectral sparsifiers [Ahn, Guha, McGregor ’13]

I maximal matching [Chitnis et al. ’15]

I maximum matching [Ahn, Guha, McGregor ’1a],
[Bury, Schwiegelshohn ’15], [Konrad ’15], [Assadi et
al. ’16], [Chitnis et al. ’16], [Assadi et al. ’17]

I vertex cover [Chitnis et al. ’15], [Chitnis et al. ’16]

I hitting set [Chitnis et al. ’16]

I b-matching [Chitnis et al. ’16]

I disjoint paths [Chitnis et al. ’16]

I k-colorable subgraph and several other maximum
subgraph problems [Chitnis et al. ’16]

I densest subgraph [Bhattacharya et al. ’15],
[McGregor et al. ’15], [Esfandiari et al. ’16]

I vertex and hyperedge connectivity [Guha, McGregor,
Tench ’15]

I graph degeneracy [Farach-Colton, Tsai ’16]

Many algs don’t need `0-sample, but rather just any i ∈ supp(z)
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One other problem: finding duplicates

Given a stream of n + 1 integers from [n], pigeonhole says there
must be at least one duplicate. Find it!

I [Gopalan, Radhakrishnan ’09]: O(log3 n) space for constant δ

(reduction to `1-sampling)

I State-of-the-art. [Jowhari, Sağlam, Tardos ’11]: O(log(1/δ) log2 n)
space for failure prob. δ.
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Our contribution [Nelson, Pachocki, Wang ’17]

I Finding any element of support(z) in strict turnstile streams
requires Ω(min{n, log(1/δ) log2 n

log(1/δ)}) space.

I Finding any k elements from support in strict turnstile requires
Ω(min{n, t log2(n/t)}) space for t = max{k , log(1/δ)}.

I Implies tight lower bounds for `p-sampling for any 0 ≤ p < 2
and also `0-samplingk for t < n.99.

I Also show lower bound (tight for δ > 2−n
.99

) of
Ω(min{n, log(1/δ) log2 n

log(1/δ)}) space for finding duplicates.

I Lower bounds from UR (universal relation), as in [JST11]

heart of our new tight result: new tight lower bound for UR

I Theorem: R→,pubδ (UR) = Θ(min{n, log(1/δ) log2 n
log(1/δ)})
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Universal relation

I Arose out of work of [Karchmer, Wigderson ’88] on depth
lower bounds for circuits

I f : {0, 1}n → {0, 1}
I Alice receives x ∈ f −1(0), Bob receives y ∈ f −1(1) (so x 6= y)
I must find i ∈ [n] such that xi 6= yi

I Thm [KW88]: D(f ) = C (f )
(Depth equals Deterministic Communication Complexity)

I Used in [KW88] to obtain tight Ω(log2 n) depth lower bound
for monotone circuits computing s-t connectivity

I Later, [Karchmer, Raz, Wigderson’91] outlined strategy to separate
NC1 from P (and even from NC2): show a form of direct
sum theorem for “k-fold composition” of functions (“KRW
conjecture”), then apply k-fold composition to a “hard”
function on log n variables with k = log n/ log log n.

I Warmup [KRW91]: prove that direct sum theorem holds for
k-fold composition of UR relation. (was later resolved
positively in [Edmonds, Impagliazzo, Rudich, Sgall ’91])
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I Warmup [KRW91]: prove that direct sum theorem holds for
k-fold composition of UR relation. (was later resolved
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Universal relation

I UR: forget about the function f , just promised that x 6= y

I Alice, Bob get x , y ∈ {0, 1}n (resp.) with promise x 6= y

I must find i ∈ [n] such that xi 6= yi

I Deterministic comm. complexity of UR very well understood
(upper and lower bounds off by an additive 3 bits!), even in
bounded number of rounds [Tardos, Zwick ’97]

I Here we focus on one-way communication complexity in the

public coin model, R→,pubδ (UR):
I Alice sends a single message to Bob
I Bob, based on that message, must output i ∈ [n] s.t.

P(xi 6= yi ) ≥ 1− δ
I will also look at some variants / promise versions:

I URk : Bob must output min{k, ‖x − y‖0} differing indices
I UR⊂: Alice is promised supp(y) ( supp(x)
I UR+: Bob knows | supp(x)| (not super important . . .)
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Universal relation

Thm [NPW’17]: For any δ bounded away from 1 and any k ∈ [n],

R→,pubδ (URk) = Θ(min{n, t log2(n/t)}) for t = max{k, log(1/δ)}.

∗In fact, lower bound even holds for the special case UR⊂,+k

Upper bound is a slight improvement of [JST11], which showed

R→,pubδ (URk) = O(min{n, t log2 n}).
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Relevance to streaming lower bounds

[JST11] reduced UR to finding duplicates and (general turnstile)

`p-sampling, then showed Rpub,→
δ (UR) = Ω(log2 n).

In fact [JST11] even showed Rpub,→
δ (UR⊂) = Ω(log2 n) (via

reduction from Augmented-Indexing [Miltersen et al. ’98], [Ergün,

Jowhari, Sağlam ’10], [Jayram, Woodruff ’11]).

I This observation makes reductions simpler and more powerful
(hardness for even strict turnstile, and finding any element in
the support instead of `p-sampling).

I It seems [JST11] not realize that they proved this (or at least,
they did not realize that having proved this makes reductions
a tad simpler!).
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Reductions from UR⊂

Claim: Space complexity of finding an element in supp(z) in strict

turnstile with failure probability δ is at least R→,pubδ (UR⊂).

Proof: Reduction from UR⊂. Suppose A is algorithm for
streaming problem. Alice updates zi ← zi + 1 for all i ∈ supp(x)
then sends memory contents of A to Bob as message. Bob
continues running A and does zi ← zi − 1 for all i ∈ supp(y).
Then Bob outputs A.query().
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Reductions from UR⊂

Claim: Space complexity of finding duplicate in stream of length
n + 1 with failure probability δ is at least R→,pubδ (UR⊂,+).

Proof: Reduction from UR⊂,+. Suppose A is algorithm for finding
duplicate. Alice puts i in stream for each i ∈ supp(x) then sends
memory contents of A to Bob as message. Bob continues running
A by appending to stream n + 1− | supp(x)| indices
i ∈ [n]\ supp(y). Then Bob outputs A.query().
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The Main Event
Proof of our new lower bound for R→,pubδ (UR⊂,+)



Lower bound plan

I Idea: if P is efficient 1-way protocol for UR⊂,+, use it to
design efficient Las Vegas encoding for

([n]
m

)
for particular m

(encoding length is random variable; decoder always succeeds)

I any such encoding scheme needs ≥ lg(nm) = Ω(m log(n/m))
bits in expectation =⇒ lower bound for P

I Notation:
I E : encoder
I D: decoder
I Alice: 1st player in supposed efficient protocol P for UR⊂,+

I Bob: 2nd player in supposed efficient protocol P for UR⊂,+

I S : subset of [n], |S | = m, to be encoded
I 1S ∈ {0, 1}n is indicator vector of S
I The + in UR⊂,+ will mean E/D both know m

(not a big deal: otherwise E could write m down)
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Simple lower bound

E (S) is Alice’s message M ∈ {0, 1}s to Bob on input x = 1S .

1: procedure D(M)
2: T ← ∅
3: for r = 1, . . . ,m do
4: Let i be Bob’s output upon receiving message M from

Alice when Bob’s input is 1T

5: T ← T ∪ {i}
6: end for
7: return T
8: end procedure

∗This is, hopefully, a Monte Carlo encoding/decoding scheme

Want P(T = S) to be large (at least 1/2, say)
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(Wrong) Analysis: take 1

I Original failure probability of P is δ

=⇒ failure probability of decoder is δm < 1/2 for δ < 1
2m

=⇒ can set m = n/2 and get s = Ω(n) for δ < 1/n

I Problem: There’s an O(log3 n) upper bound for δ = 1
poly(n)

(Alice sends memory of `0-sampler sketch to Bob, run on 1S)

I Problem is even worse: E (S) could have first applied
error-correcting code to 1S to obtain S ′ ∈ [Θ(n)], then Bob
could recover S with good probability even for δ a constant!
But for constant δ, there’s O(log2 n) upper bound for UR⊂,+.

I What went wrong here?

I Adaptivity!!!

I Correctness of P says ∀x , y , P(P succeeds on x , y) ≥ 1− δ.
Bob not allowed to choose y based on P’s random coins.
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Correct Analysis

I Fix S and define event ET : P succeeds when x = 1S , y = 1T .

I If
⋂

T(S ET occurs, then decoder succeeds.

I

P(¬(
⋂
T(S

ET )) = P(
⋃
T(S

ET ) < δ2m.

set m = blg(1/δ)c − 1, so decoder succeeds w.p. > 1/2

I =⇒ s = |M| = Ω(m log(n/m)) = Ω(log(1/δ) log n
log(1/δ) )

I to get optimal lower bound, need another log n
log(1/δ) factor
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Optimal lower bound for R→,pubδ (UR⊂,+)

Moral of our work: it’s ok to make adaptive queries to
mechanism that are not independent of the randomness of the
mechanism, if the amount of dependence can be controlled

Lemma [NPW’17]: Consider f : {0, 1}b × {0, 1}q → {0, 1} and
X ∈ {0, 1}b uniformly random. If
∀y ∈ {0, 1}q, P(f (X , y) = 1) ≤ δ where 0 < δ < 1, then for any
random variable Y supported on {0, 1}q,

P(f (X ,Y ) = 1) ≤ I (X ;Y ) + 1

log 1
δ

,

where I (X ;Y ) is the mutual information between X and Y .

Interpretation: Fix input x to Alice. X is internal randomness of
P, and f (x , y) is 1 iff P is incorrect when Bob has input y .
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Adaptivity lemma

Lemma [NPW’17]: Consider f : {0, 1}b × {0, 1}q → {0, 1} and
X ∈ {0, 1}b uniformly random. If
∀y ∈ {0, 1}q, P(f (X , y) = 1) ≤ δ where 0 < δ < 1, then for any
random variable Y supported on {0, 1}q,

P(f (X ,Y ) = 1) ≤ I (X ;Y ) + 1

log 1
δ

,

where I (X ;Y ) is the mutual information between X and Y .

Is the above lemma tight?

Yes. x , y ∈ [n], X is uniform. f (x , y) = 1 iff x = y . δ = 1
n .

I consider this Y : equals X w.p. t
log n , and otherwise is uniform

I I (X ;Y ) = t

I P(f (X ,Y ) = 1) = t
log n · 1 + (1− t

log n ) · 1
n ≈

t
log n
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where I (X ;Y ) is the mutual information between X and Y .

Is the above lemma tight?

Yes. x , y ∈ [n], X is uniform. f (x , y) = 1 iff x = y . δ = 1
n .

I consider this Y : equals X w.p. t
log n , and otherwise is uniform

I I (X ;Y ) = t

I P(f (X ,Y ) = 1) = t
log n · 1 + (1− t

log n ) · 1
n ≈

t
log n
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Rest of talk
1. Proving the lemma (short).

2. Using the lemma to lower bound R→,pubδ (UR⊂,+).
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Proof of lemma

Lemma: P(f (X ,Y ) = 1) ≤ I (X ;Y )+1

log 1
δ

I Equivalent to prove I (X ;Y ) ≥ (E f (X ,Y )) · log 1
δ − 1

I I (X ;Y ) = H(X )− H(X |Y ) = b − H(X |Y ).

Want to upper bound H(X |Y ).

I Consider communication problem: Alice gets X ,Y , Bob only
gets Y . Expected number of bits Alice needs to send Bob so
he can recover X with probability 1 is exactly H(X |Y ).

I A cheap protocol: Alice sends f (X ,Y ) (1 bit). If
f (X ,Y ) = 0, also sends all of X (b bits). Else sends index of
X in {x : f (x ,Y ) = 1} (log(δ2b) = b − log 1

δ bits).

=⇒ H(X |Y ) ≤ 1 + b − (E f (X ,Y )) · log 1
δ as desired.
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Optimal lower bound for R→,pubδ (UR⊂,+)
I Our approach: Give up on D recovering all of S from M.
I D will recover subset A ⊂ S , E |A| = Θ(log 1

δ log n
log 1

δ

) from

M. E (S) then is the concatenation of M, together with the
elements B = S\A explicitly written down (log

( n
|B|
)

bits).

I A comes from R = Θ(log 1
δ log n

log 1
δ

) iterations in decoder.

Will have P succeeding in R
2 iterations in expectation.

I In light of Lemma, D will pretend to be Bob in each of the R
iterations such that for all j ∈ [R], yj in iteration j has mutual
information ≤ 1

2 log 1
δ − 1 with the randomness used by P.

I After iteration j , D randomly adds tj elements of B to T to
dilute info about elements of S recovered from M so far.

I Need tj big enough to get enough information dilution. This
forces R = O(log 1

δ log m
log 1

δ

).

I Will get lower bound |M| = Ω(R lg n
m ) = Ω(lg 1

δ lg m
lg 1
δ

lg n
m )

set m =
√
n log 1

δ
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Optimal lower bound for R→,pubδ (UR⊂,+)

Variables shared by E and D.

1: m← b
√

n log 1
δ c

2: K ← b 1
16 log 1

δ c
3: R ← bK log(m/4K )c
4: for r = 0, . . . ,R do
5: nr ← bm · 2−

r
K c . |Sr | = nr , and ∀r nr − nr+1 ≥ 2

6: end for
7: π is a random permutation on [n]

nj is such that after j iterations, D has already recovered m − nj
elements of S (Sj , |Sj | = nj , remains to be recovered)
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Optimal lower bound for R→,pubδ (UR⊂,+)
Decoding algorithm to recover S ⊂ [n], |S | = m

1: procedure D(M, B, b)
. M is Alice(1S)
. b ∈ {0, 1}R indicates rounds in which Bob succeeds
. B contains all elements of S that D doesn’t recover via M

2: A← ∅ . the subset of S we recover just from M
3: T0 ← ∅ . subset of S we’ve built up so far
4: for r = 1, . . . ,R do . each iteration tries to recover 1 elt via M
5: Tr ← Tr−1

6: if br = 1 then . this means Bob succeeds in round r
7: sr ← Bob(M, 1Tr−1 ) . Invariant: Tr = S\Sr
8: A← A ∪ {sr}, Tr ← Tr ∪ {sr}
9: end if

10: Insert m− nr − |Tr | items from B\Tr into Tr with smallest πi
. “Differential Privacy” step. Still nr elements left to recover.

11: end for
12: return B ∪ A

13: end procedure
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Optimal lower bound for R→,pubδ (UR⊂,+)
Encoding algorithm for S ⊂ [n], |S | = m

1: procedure E (S)
2: M ← Alice(1S)
3: A← ∅ . the set D recovers just from M

4: S0 ← S . at end of round r , D still needs to recover Sr
5: for r = 1, . . . ,R do

6: sr ← Bob(M, 1S\Sr−1
) . sr

?
∈ Sr−1 found in round r

7: Sr ← Sr−1

8: if sr ∈ Sr−1 then . i.e. if sr is a valid sample
9: br ← 1 . b ∈ {0, 1}R indicating which rounds succeed

10: A← A ∪ {sr}, Sr ← Sr\{sr}
11: else
12: br ← 0
13: end if
14: remove |Sr | − nr elts from Sr with smallest πi . now |Sr | = nr
15: end for
16: return (M, S\A, b)

17: end procedure



Optimal lower bound for R→,pubδ (UR⊂,+)
Encoding algorithm for S ⊂ [n], |S | = m

1: procedure E (S)
2: M ← Alice(1S)
3: A← ∅ . the set D recovers just from M
4: S0 ← S . at end of round r , D still needs to recover Sr

5: for r = 1, . . . ,R do

6: sr ← Bob(M, 1S\Sr−1
) . sr

?
∈ Sr−1 found in round r

7: Sr ← Sr−1

8: if sr ∈ Sr−1 then . i.e. if sr is a valid sample
9: br ← 1 . b ∈ {0, 1}R indicating which rounds succeed

10: A← A ∪ {sr}, Sr ← Sr\{sr}
11: else
12: br ← 0
13: end if
14: remove |Sr | − nr elts from Sr with smallest πi . now |Sr | = nr
15: end for
16: return (M, S\A, b)

17: end procedure



Optimal lower bound for R→,pubδ (UR⊂,+)
Encoding algorithm for S ⊂ [n], |S | = m

1: procedure E (S)
2: M ← Alice(1S)
3: A← ∅ . the set D recovers just from M
4: S0 ← S . at end of round r , D still needs to recover Sr
5: for r = 1, . . . ,R do

6: sr ← Bob(M, 1S\Sr−1
) . sr

?
∈ Sr−1 found in round r

7: Sr ← Sr−1

8: if sr ∈ Sr−1 then . i.e. if sr is a valid sample
9: br ← 1 . b ∈ {0, 1}R indicating which rounds succeed

10: A← A ∪ {sr}, Sr ← Sr\{sr}
11: else
12: br ← 0
13: end if
14: remove |Sr | − nr elts from Sr with smallest πi . now |Sr | = nr
15: end for
16: return (M, S\A, b)

17: end procedure



Optimal lower bound for R→,pubδ (UR⊂,+)
Encoding algorithm for S ⊂ [n], |S | = m

1: procedure E (S)
2: M ← Alice(1S)
3: A← ∅ . the set D recovers just from M
4: S0 ← S . at end of round r , D still needs to recover Sr
5: for r = 1, . . . ,R do

6: sr ← Bob(M, 1S\Sr−1
) . sr

?
∈ Sr−1 found in round r

7: Sr ← Sr−1

8: if sr ∈ Sr−1 then . i.e. if sr is a valid sample

9: br ← 1 . b ∈ {0, 1}R indicating which rounds succeed
10: A← A ∪ {sr}, Sr ← Sr\{sr}
11: else
12: br ← 0
13: end if
14: remove |Sr | − nr elts from Sr with smallest πi . now |Sr | = nr
15: end for
16: return (M, S\A, b)

17: end procedure



Optimal lower bound for R→,pubδ (UR⊂,+)
Encoding algorithm for S ⊂ [n], |S | = m

1: procedure E (S)
2: M ← Alice(1S)
3: A← ∅ . the set D recovers just from M
4: S0 ← S . at end of round r , D still needs to recover Sr
5: for r = 1, . . . ,R do

6: sr ← Bob(M, 1S\Sr−1
) . sr

?
∈ Sr−1 found in round r

7: Sr ← Sr−1

8: if sr ∈ Sr−1 then . i.e. if sr is a valid sample
9: br ← 1 . b ∈ {0, 1}R indicating which rounds succeed

10: A← A ∪ {sr}, Sr ← Sr\{sr}

11: else
12: br ← 0
13: end if
14: remove |Sr | − nr elts from Sr with smallest πi . now |Sr | = nr
15: end for
16: return (M, S\A, b)

17: end procedure



Optimal lower bound for R→,pubδ (UR⊂,+)
Encoding algorithm for S ⊂ [n], |S | = m

1: procedure E (S)
2: M ← Alice(1S)
3: A← ∅ . the set D recovers just from M
4: S0 ← S . at end of round r , D still needs to recover Sr
5: for r = 1, . . . ,R do

6: sr ← Bob(M, 1S\Sr−1
) . sr

?
∈ Sr−1 found in round r

7: Sr ← Sr−1

8: if sr ∈ Sr−1 then . i.e. if sr is a valid sample
9: br ← 1 . b ∈ {0, 1}R indicating which rounds succeed

10: A← A ∪ {sr}, Sr ← Sr\{sr}
11: else
12: br ← 0
13: end if

14: remove |Sr | − nr elts from Sr with smallest πi . now |Sr | = nr
15: end for
16: return (M, S\A, b)

17: end procedure



Optimal lower bound for R→,pubδ (UR⊂,+)
Encoding algorithm for S ⊂ [n], |S | = m

1: procedure E (S)
2: M ← Alice(1S)
3: A← ∅ . the set D recovers just from M
4: S0 ← S . at end of round r , D still needs to recover Sr
5: for r = 1, . . . ,R do

6: sr ← Bob(M, 1S\Sr−1
) . sr

?
∈ Sr−1 found in round r

7: Sr ← Sr−1

8: if sr ∈ Sr−1 then . i.e. if sr is a valid sample
9: br ← 1 . b ∈ {0, 1}R indicating which rounds succeed

10: A← A ∪ {sr}, Sr ← Sr\{sr}
11: else
12: br ← 0
13: end if
14: remove |Sr | − nr elts from Sr with smallest πi . now |Sr | = nr
15: end for

16: return (M, S\A, b)

17: end procedure



Optimal lower bound for R→,pubδ (UR⊂,+)
Encoding algorithm for S ⊂ [n], |S | = m

1: procedure E (S)
2: M ← Alice(1S)
3: A← ∅ . the set D recovers just from M
4: S0 ← S . at end of round r , D still needs to recover Sr
5: for r = 1, . . . ,R do

6: sr ← Bob(M, 1S\Sr−1
) . sr

?
∈ Sr−1 found in round r

7: Sr ← Sr−1

8: if sr ∈ Sr−1 then . i.e. if sr is a valid sample
9: br ← 1 . b ∈ {0, 1}R indicating which rounds succeed

10: A← A ∪ {sr}, Sr ← Sr\{sr}
11: else
12: br ← 0
13: end if
14: remove |Sr | − nr elts from Sr with smallest πi . now |Sr | = nr
15: end for
16: return (M, S\A, b)

17: end procedure



Analysis
Recall K = b 1

16 log 1
δ c. Note nr = 2−r/Km ≈ (1− 1/K )rm.

X is randomness used by UR⊂,+ protocol.

Lemma: If in each round we add a random 1/K -fraction of the
remaining elements of S to Tr , then for all r ∈ [R], I (X ;Sr ) ≤ 6K .
Proof:

I I (X ;Sr ) = H(Sr )− H(Sr |X )

I |Sr | = nr and |S | = m, so H(Sr ) ≤ log
(m
nr

)
I We show that for any T ∈

(S
nr

)
and x ,

P(Sr = T |X = x) ≤ p = 26K

(m
nr

)

=⇒ H(Sr |X ) ≥ log 1
p ≥ log

(m
nr

)
− 6K �

Correctness of protocol then follows by adaptivity lemma.

Note a “1/K -fraction of what’s left” requires at least K items left.
Thus we stop when 2−R/Km < K , i.e. R = Θ(K log(m/K )).
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