Optimal lower bounds for samplers, finding duplicates, and universal relation

Jelani Nelson Harvard

March 21, 2017

joint work with Jakub Pachocki (OpenAI) and Zhengyu Wang (Harvard)

Turnstile streaming

▶ vector $z \in \mathbb{R}^n$ starts off as 0, updates " $z_i \leftarrow z_i + \Delta$ ", $\Delta \in \mathbb{R}$

Turnstile streaming

- \blacktriangleright vector $z \in \mathbb{R}^n$ starts off as 0, updates " $z_i \leftarrow z_i + \Delta$ ", $\Delta \in \mathbb{R}$
- \blacktriangleright data structure supporting various types of queries to z

Turnstile streaming

▶ vector $z \in \mathbb{R}^n$ starts off as 0, updates " $z_i \leftarrow z_i + \Delta$ ", $\Delta \in \mathbb{R}$

data structure supporting various types of queries to z

- Assumptions and examples:
 - Insertion-only: Δ = 1 always e.g. n is size of lexicon. Google search for word i causes update to i, so z_i is frequency of word i. Might want to find frequent query words ("heavy hitters").
 - Strict turnstile: Δ positive or negative, but ∀i z_i ≥ 0 always e.g. graph on N vertices, n = {N / 2}. Edge insertion of e causes z_e ← z_e + 1, and deletion has Δ = −1. Never delete edges that don't already exist (no negative edge multiplicities).
 - (General) turnstile: No additional assumptions same as insertion-only example, but searches yesterday have $\Delta = -1$ and today have $\Delta = 1$. z_i is then change in frequency, now want to find words with large changes.

Sampling in streams

Early work on reservoir sampling: sample k items from insertion-only stream using O(k log n) bits of memory. attributed in [Knuth'81] to Alan G. Waterman

Sampling in streams

- Early work on reservoir sampling: sample k items from insertion-only stream using O(k log n) bits of memory. attributed in [Knuth'81] to Alan G. Waterman
- solves ℓ_1 -sampling in insertion-only:

for k = 1, $\mathbb{P}(i \text{ is the sampled item}) = \frac{|z_i|}{||z||_1}$

Sampling in streams

- Early work on reservoir sampling: sample k items from insertion-only stream using O(k log n) bits of memory. attributed in [Knuth'81] to Alan G. Waterman
- ▶ solves ℓ_1 -sampling in insertion-only: for k = 1, $\mathbb{P}(i \text{ is the sampled item}) = \frac{|z_i|}{||z||_1}$
- What about (strict) turnstile? Other sampling distributions?

ℓ_p -sampling

ℓ_0 -sampling

- ▶ $p_i = \frac{|z|_i^p}{\|z\|_p^p}$
- [Coppersmith, Kumar '04] asked whether ℓ_2 sampling is possible in small space (would lead to nearly space-optimal algorithms for ℓ_p -norm estimation for p > 2).
- First small-space solution in [Monemizadeh, Woodruff '10].

$$\blacktriangleright p_i = \begin{cases} \frac{1}{\|z\|_0}, & z_i \neq 0\\ 0, & \text{otherwise} \end{cases}$$

- Originally asked about in [Cormode, Muthu, Rozenbaum '05] and [Frahling, Indyk, Sohler '05].
- Shown to be a useful primitive for turnstile graph streaming in [Ahn, Guha, McGregor '10].

 ℓ_p -sampling (0 < p < 2) *all space measured in bits

- Monemizadeh, Woodruff '10]: in $poly(\varepsilon^{-1} \log n)$ space, whp sample has distribution within $1 \pm \varepsilon$ of $p_i = \frac{|z_i|^p}{\|z\|_p^p}$
- ▶ [Andoni, Krauthgamer, Indyk '11]: constant failure probability, $O(\varepsilon^{-p} \log^3 n)$ space for $1 \le p \le 2$

 ℓ_p -sampling (0 < p < 2) *all space measured in bits

- ► [Monemizadeh, Woodruff '10]: in $poly(\varepsilon^{-1} \log n)$ space, whp sample has distribution within $1 \pm \varepsilon$ of $p_i = \frac{|z_i|^p}{\|z\|_p^p}$
- ▶ [Andoni, Krauthgamer, Indyk '11]: constant failure probability, $O(\varepsilon^{-p} \log^3 n)$ space for $1 \le p \le 2$
- ▶ State-of-the-art. [Jowhari, Sağlam, Tardos '11]: $O(\varepsilon^{-\max\{1,p\}} \log(1/\delta) \log^2 n)$ space for $p \neq 1$. $O(\varepsilon^{-1} \log(1/\varepsilon) \log(1/\delta) \log^2 n)$ for p = 1.

 ℓ_p -sampling (0 < p < 2) *all space measured in bits

- ► [Monemizadeh, Woodruff '10]: in $poly(\varepsilon^{-1} \log n)$ space, whp sample has distribution within $1 \pm \varepsilon$ of $p_i = \frac{|z_i|^p}{\|z\|_p^p}$
- ► [Andoni, Krauthgamer, Indyk '11]: constant failure probability, $O(\varepsilon^{-p} \log^3 n)$ space for $1 \le p \le 2$
- ▶ State-of-the-art. [Jowhari, Sağlam, Tardos '11]: $O(\varepsilon^{-\max\{1,p\}} \log(1/\delta) \log^2 n)$ space for $p \neq 1$. $O(\varepsilon^{-1} \log(1/\varepsilon) \log(1/\delta) \log^2 n)$ for p = 1. for constant ε , space is $O(\log(1/\delta) \log^2 n)$.

$\ell_0\text{-sampling} \\ \text{*all space measured in bits}$

Frahling, Indyk, Sohler'05]: $O(\log^3 n)$ space, whp success

ℓ_0 -sampling *all space measured in bits

- Frahling, Indyk, Sohler'05]: $O(\log^3 n)$ space, whp success
- ► State-of-the-art. [Jowhari, Sağlam, Tardos '11]: $O(\log(1/\delta) \log^2 n)$ space (w.p. δ can output anything, and w.p. 1δ outputs uniformly random element from support(z))

ℓ_0 -sampling *all space measured in bits

- Frahling, Indyk, Sohler'05]: $O(\log^3 n)$ space, whp success
- ► State-of-the-art. [Jowhari, Sağlam, Tardos '11]: $O(\log(1/\delta) \log^2 n)$ space (w.p. δ can output anything, and w.p. 1δ outputs uniformly random element from support(z))
- In fact, [JST11] spits out min{||z||₀, Θ(log(1/δ))} uniform random elements from support, without replacement
- ► motivates studying l₀-sampling_k (have to output min{k, ||z||₀} samples from support, w/o replacement)
- ► [JST11] achieves space O(t log² n) for l₀-sampling_k for t = max{k, log(1/δ)}.

 $\ell_0\text{-sampling} \\ \text{*all space measured in bits}$

 $\ell_0\text{-sampling} \\ \text{*all space measured in bits}$

Since [Ahn, Guha, McGregor '12a], used as a subroutine in seemingly every known turnstile algorithm for dynamic graphs.

ℓ_0 -sampling *all space measured in bits

Since [Ahn, Guha, McGregor '12a], used as a subroutine in seemingly every known turnstile algorithm for dynamic graphs.

- connectivity [Ahn, Guha, McGregor '12a]
- k-connectivity [Ahn, Guha, McGregor '12a]
- bipartiteness [Ahn, Guha, McGregor '12a]
- minimum spanning tree [Ahn, Guha, McGregor '12a]
- subgraph counting [Ahn, Guha, McGregor '12b]
- minimum cut [Ahn, Guha, McGregor '12b]
- cut-sparsifiers [Ahn, Guha, McGregor '12b]
- spanners [Ahn, Guha, McGregor '12b]
- spectral sparsifiers [Ahn, Guha, McGregor '13]
- maximal matching [Chitnis et al. '15]
- maximum matching [Ahn, Guha, McGregor '1a], [Bury, Schwiegelshohn '15], [Konrad '15], [Assadi et al. '16], [Chitnis et al. '16], [Assadi et <u>al. '17]</u>

- vertex cover [Chitnis et al. '15], [Chitnis et al. '16]
- hitting set [Chitnis et al. '16]
- b-matching [Chitnis et al. '16]
- disjoint paths [Chitnis et al. '16]
- k-colorable subgraph and several other maximum subgraph problems [Chitnis et al. '16]
- densest subgraph [Bhattacharya et al. '15], [McGregor et al. '15], [Esfandiari et al. '16]
- vertex and hyperedge connectivity [Guha, McGregor, Tench '15]
- graph degeneracy [Farach-Colton, Tsai '16]

ℓ_0 -sampling *all space measured in bits

Since [Ahn, Guha, McGregor '12a], used as a subroutine in seemingly every known turnstile algorithm for dynamic graphs.

- connectivity [Ahn, Guha, McGregor '12a]
- k-connectivity [Ahn, Guha, McGregor '12a]
- bipartiteness [Ahn, Guha, McGregor '12a]
- minimum spanning tree [Ahn, Guha, McGregor '12a]
- subgraph counting [Ahn, Guha, McGregor '12b]
- minimum cut [Ahn, Guha, McGregor '12b]
- cut-sparsifiers [Ahn, Guha, McGregor '12b]
- spanners [Ahn, Guha, McGregor '12b]
- spectral sparsifiers [Ahn, Guha, McGregor '13]
- maximal matching [Chitnis et al. '15]
- maximum matching [Ahn, Guha, McGregor '1a], [Bury, Schwiegelshohn '15], [Konrad '15], [Assadi et al. '16], [Chitnis et al. '16], [Assadi et al. '17]

- vertex cover [Chitnis et al. '15], [Chitnis et al. '16]
- hitting set [Chitnis et al. '16]
- b-matching [Chitnis et al. '16]
- disjoint paths [Chitnis et al. '16]
- k-colorable subgraph and several other maximum subgraph problems [Chitnis et al. '16]
- densest subgraph [Bhattacharya et al. '15], [McGregor et al. '15], [Esfandiari et al. '16]
- vertex and hyperedge connectivity [Guha, McGregor, Tench '15]
- graph degeneracy [Farach-Colton, Tsai '16]

Many algs don't need ℓ_0 -sample, but rather just any $i \in supp(z)$

One other problem: finding duplicates

Given a stream of n + 1 integers from [n], pigeonhole says there must be at least one duplicate. Find it!

One other problem: finding duplicates

Given a stream of n + 1 integers from [n], pigeonhole says there must be at least one duplicate. Find it!

► [Gopalan, Radhakrishnan '09]: $O(\log^3 n)$ space for constant δ (reduction to ℓ_1 -sampling)

One other problem: finding duplicates

Given a stream of n + 1 integers from [n], pigeonhole says there must be at least one duplicate. Find it!

- ► [Gopalan, Radhakrishnan '09]: $O(\log^3 n)$ space for constant δ (reduction to ℓ_1 -sampling)
- State-of-the-art. [Jowhari, Sağlam, Tardos '11]: $O(\log(1/\delta) \log^2 n)$ space for failure prob. δ .

Our main contribution

Finding any element of support(z) in strict turnstile streams requires Ω(min{n, log(1/δ) log² n/log(1/δ)}) space.

- Finding any element of support(z) in strict turnstile streams requires Ω(min{n, log(1/δ) log² n/log(1/δ)}) space.
- Finding any k elements from support in strict turnstile requires $\Omega(\min\{n, t \log^2(n/t)\})$ space for $t = \max\{k, \log(1/\delta)\}$.

- Finding any element of support(z) in strict turnstile streams requires Ω(min{n, log(1/δ) log² n / log(1/δ)}) space.
- Finding any k elements from support in strict turnstile requires $\Omega(\min\{n, t \log^2(n/t)\})$ space for $t = \max\{k, \log(1/\delta)\}$.
- ▶ Implies tight lower bounds for ℓ_p -sampling for any $0 \le p < 2$ and also ℓ_0 -sampling_k for $t < n^{.99}$.

- Finding any element of support(z) in strict turnstile streams requires Ω(min{n, log(1/δ) log² n/log(1/δ)}) space.
- Finding any k elements from support in strict turnstile requires $\Omega(\min\{n, t \log^2(n/t)\})$ space for $t = \max\{k, \log(1/\delta)\}$.
- ▶ Implies tight lower bounds for ℓ_p -sampling for any $0 \le p < 2$ and also ℓ_0 -sampling_k for $t < n^{.99}$.
- Also show lower bound (tight for $\delta > 2^{-n^{.99}}$) of $\Omega(\min\{n, \log(1/\delta) \log^2 \frac{n}{\log(1/\delta)}\})$ space for finding duplicates.

- Finding any element of support(z) in strict turnstile streams requires Ω(min{n, log(1/δ) log² n/log(1/δ)}) space.
- Finding any k elements from support in strict turnstile requires $\Omega(\min\{n, t \log^2(n/t)\})$ space for $t = \max\{k, \log(1/\delta)\}$.
- ▶ Implies tight lower bounds for ℓ_p -sampling for any $0 \le p < 2$ and also ℓ_0 -sampling_k for $t < n^{.99}$.
- Also show lower bound (tight for $\delta > 2^{-n^{.99}}$) of $\Omega(\min\{n, \log(1/\delta) \log^2 \frac{n}{\log(1/\delta)}\})$ space for finding duplicates.
- Lower bounds from UR (universal relation), as in [JST11] heart of our new tight result: new tight lower bound for UR

- Finding any element of support(z) in strict turnstile streams requires Ω(min{n, log(1/δ) log² n/log(1/δ)}) space.
- Finding any k elements from support in strict turnstile requires $\Omega(\min\{n, t \log^2(n/t)\})$ space for $t = \max\{k, \log(1/\delta)\}$.
- ▶ Implies tight lower bounds for ℓ_p -sampling for any $0 \le p < 2$ and also ℓ_0 -sampling_k for $t < n^{.99}$.
- Also show lower bound (tight for $\delta > 2^{-n^{.99}}$) of $\Omega(\min\{n, \log(1/\delta) \log^2 \frac{n}{\log(1/\delta)}\})$ space for finding duplicates.
- Lower bounds from UR (universal relation), as in [JST11] heart of our new tight result: new tight lower bound for UR
- ► Theorem: $\mathsf{R}_{\delta}^{\rightarrow, pub}(\mathsf{UR}) = \Theta(\min\{n, \log(1/\delta) \log^2 \frac{n}{\log(1/\delta)}\})$

- Arose out of work of [Karchmer, Wigderson '88] on depth lower bounds for circuits
 - ▶ $f: \{0,1\}^n \to \{0,1\}$
 - ► Alice receives $x \in f^{-1}(0)$, Bob receives $y \in f^{-1}(1)$ (so $x \neq y$)
 - must find $i \in [n]$ such that $x_i \neq y_i$

- Arose out of work of [Karchmer, Wigderson '88] on depth lower bounds for circuits
 - ▶ $f: \{0,1\}^n \to \{0,1\}$
 - ► Alice receives $x \in f^{-1}(0)$, Bob receives $y \in f^{-1}(1)$ (so $x \neq y$)
 - must find $i \in [n]$ such that $x_i \neq y_i$
 - Thm [KW88]: D(f) = C(f) (Depth equals Deterministic Communication Complexity)

- Arose out of work of [Karchmer, Wigderson '88] on depth lower bounds for circuits
 - ▶ $f: \{0,1\}^n \to \{0,1\}$
 - ► Alice receives $x \in f^{-1}(0)$, Bob receives $y \in f^{-1}(1)$ (so $x \neq y$)
 - must find $i \in [n]$ such that $x_i \neq y_i$
 - Thm [KW88]: D(f) = C(f) (Depth equals Deterministic Communication Complexity)
 - Used in [KW88] to obtain tight Ω(log² n) depth lower bound for monotone circuits computing s-t connectivity

- Arose out of work of [Karchmer, Wigderson '88] on depth lower bounds for circuits
 - ▶ $f: \{0,1\}^n \to \{0,1\}$
 - ► Alice receives $x \in f^{-1}(0)$, Bob receives $y \in f^{-1}(1)$ (so $x \neq y$)
 - must find $i \in [n]$ such that $x_i \neq y_i$
 - Thm [KW88]: D(f) = C(f) (Depth equals Deterministic Communication Complexity)
 - Used in [KW88] to obtain tight Ω(log² n) depth lower bound for monotone circuits computing s-t connectivity

▶ Later, [Karchmer, Raz, Wigderson'91] outlined strategy to separate \mathbf{NC}^1 from \mathbf{P} (and even from \mathbf{NC}^2): show a form of direct sum theorem for "*k*-fold composition" of functions ("KRW conjecture"), then apply *k*-fold composition to a "hard" function on log *n* variables with $k = \log n / \log \log n$.

- Arose out of work of [Karchmer, Wigderson '88] on depth lower bounds for circuits
 - ▶ $f: \{0,1\}^n \to \{0,1\}$
 - ► Alice receives $x \in f^{-1}(0)$, Bob receives $y \in f^{-1}(1)$ (so $x \neq y$)
 - must find $i \in [n]$ such that $x_i \neq y_i$
 - Thm [KW88]: D(f) = C(f) (Depth equals Deterministic Communication Complexity)
 - Used in [KW88] to obtain tight Ω(log² n) depth lower bound for monotone circuits computing s-t connectivity
- ▶ Later, [Karchmer, Raz, Wigderson'91] outlined strategy to separate \mathbf{NC}^1 from \mathbf{P} (and even from \mathbf{NC}^2): show a form of direct sum theorem for "*k*-fold composition" of functions ("KRW conjecture"), then apply *k*-fold composition to a "hard" function on log *n* variables with $k = \log n / \log \log n$.
- Warmup [KRW91]: prove that direct sum theorem holds for k-fold composition of UR relation. (was later resolved positively in [Edmonds, Impagliazzo, Rudich, Sgall '91])

- **UR**: forget about the function f, just promised that $x \neq y$
- ► Alice, Bob get $x, y \in \{0, 1\}^n$ (resp.) with promise $x \neq y$
- must find $i \in [n]$ such that $x_i \neq y_i$

- **UR**: forget about the function f, just promised that $x \neq y$
- ▶ Alice, Bob get $x, y \in \{0, 1\}^n$ (resp.) with promise $x \neq y$
- must find $i \in [n]$ such that $x_i \neq y_i$
- Deterministic comm. complexity of UR very well understood (upper and lower bounds off by an additive 3 bits!), even in bounded number of rounds [Tardos, Zwick '97]

- **UR**: forget about the function f, just promised that $x \neq y$
- ▶ Alice, Bob get $x, y \in \{0, 1\}^n$ (resp.) with promise $x \neq y$
- must find $i \in [n]$ such that $x_i \neq y_i$
- Deterministic comm. complexity of UR very well understood (upper and lower bounds off by an additive 3 bits!), even in bounded number of rounds [Tardos, Zwick '97]
- ► Here we focus on one-way communication complexity in the public coin model, $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR})$:
 - Alice sends a single message to Bob
 - ▶ Bob, based on that message, must output $i \in [n]$ s.t. $\mathbb{P}(x_i \neq y_i) \ge 1 - \delta$

Universal relation

- ▶ **UR**: forget about the function f, just promised that $x \neq y$
- ▶ Alice, Bob get $x, y \in \{0, 1\}^n$ (resp.) with promise $x \neq y$
- must find $i \in [n]$ such that $x_i \neq y_i$
- Deterministic comm. complexity of UR very well understood (upper and lower bounds off by an additive 3 bits!), even in bounded number of rounds [Tardos, Zwick '97]
- ► Here we focus on one-way communication complexity in the public coin model, $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR})$:
 - Alice sends a single message to Bob
 - ▶ Bob, based on that message, must output $i \in [n]$ s.t. $\mathbb{P}(x_i \neq y_i) \ge 1 - \delta$
- will also look at some variants / promise versions:
 - **UR**_k: Bob must output min $\{k, ||x y||_0\}$ differing indices
 - ▶ **UR**^C: Alice is promised $supp(y) \subsetneq supp(x)$
 - ▶ **UR**⁺: Bob knows | *supp*(*x*)| (not super important ...)

Thm [NPW'17]: For any δ bounded away from 1 and any $k \in [n]$, $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}_k) = \Theta(\min\{n, t \log^2(n/t)\})$ for $t = \max\{k, \log(1/\delta)\}$.

Thm [NPW'17]: For any δ bounded away from 1 and any $k \in [n]$, $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}_k) = \Theta(\min\{n, t \log^2(n/t)\})$ for $t = \max\{k, \log(1/\delta)\}$.

*In fact, lower bound even holds for the special case $\mathsf{UR}_k^{\subset,+}$

Thm [NPW'17]: For any δ bounded away from 1 and any $k \in [n]$, $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}_k) = \Theta(\min\{n, t \log^2(n/t)\})$ for $t = \max\{k, \log(1/\delta)\}$.

*In fact, lower bound even holds for the special case $\mathsf{UR}_k^{\subset,+}$

Upper bound is a slight improvement of [JST11], which showed $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}_k) = O(\min\{n, t \log^2 n\}).$

[JST11] reduced **UR** to finding duplicates and (general turnstile) ℓ_p -sampling, then showed $\mathbf{R}^{pub,\rightarrow}_{\delta}(\mathbf{UR}) = \Omega(\log^2 n)$.

[JST11] reduced **UR** to finding duplicates and (general turnstile) ℓ_p -sampling, then showed $\mathbf{R}^{pub,\rightarrow}_{\delta}(\mathbf{UR}) = \Omega(\log^2 n)$.

In fact [JST11] even showed $\mathbf{R}^{pub,\rightarrow}_{\delta}(\mathbf{UR}^{\subset}) = \Omega(\log^2 n)$ (via reduction from Augmented-Indexing [Miltersen et al. '98], [Ergün, Jowhari, Sağlam '10], [Jayram, Woodruff '11]).

[JST11] reduced **UR** to finding duplicates and (general turnstile) ℓ_p -sampling, then showed $\mathbf{R}^{pub,\rightarrow}_{\delta}(\mathbf{UR}) = \Omega(\log^2 n)$.

In fact [JST11] even showed $\mathbf{R}^{pub,\rightarrow}_{\delta}(\mathbf{UR}^{\subset}) = \Omega(\log^2 n)$ (via reduction from Augmented-Indexing [Miltersen et al. '98], [Ergün, Jowhari, Sağlam '10], [Jayram, Woodruff '11]).

This observation makes reductions simpler and more powerful (hardness for even strict turnstile, and finding any element in the support instead of l_p-sampling).

[JST11] reduced **UR** to finding duplicates and (general turnstile) ℓ_p -sampling, then showed $\mathbf{R}^{pub,\rightarrow}_{\delta}(\mathbf{UR}) = \Omega(\log^2 n)$.

In fact [JST11] even showed $\mathbf{R}^{pub,\rightarrow}_{\delta}(\mathbf{UR}^{\subset}) = \Omega(\log^2 n)$ (via reduction from Augmented-Indexing [Miltersen et al. '98], [Ergün, Jowhari, Sağlam '10], [Jayram, Woodruff '11]).

- ► This observation makes reductions simpler and more powerful (hardness for even strict turnstile, and finding any element in the support instead of ℓ_p-sampling).
- It seems [JST11] not realize that they proved this (or at least, they did not realize that having proved this makes reductions a tad simpler!).

Claim: Space complexity of finding an element in supp(z) in strict turnstile with failure probability δ is at least $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}^{\subset})$.

Claim: Space complexity of finding an element in supp(z) in strict turnstile with failure probability δ is at least $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}^{\frown})$. **Proof:** Reduction from \mathbf{UR}^{\frown} . Suppose \mathcal{A} is algorithm for streaming problem. Alice updates $z_i \leftarrow z_i + 1$ for all $i \in supp(x)$ then sends memory contents of \mathcal{A} to Bob as message. Bob continues running \mathcal{A} and does $z_i \leftarrow z_i - 1$ for all $i \in supp(y)$. Then Bob outputs $\mathcal{A}.query()$. **Claim:** Space complexity of finding duplicate in stream of length n + 1 with failure probability δ is at least $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}^{\subset,+})$.

Claim: Space complexity of finding duplicate in stream of length n + 1 with failure probability δ is at least $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{U}\mathbf{R}^{\subset,+})$. **Proof:** Reduction from $\mathbf{U}\mathbf{R}^{\subset,+}$. Suppose \mathcal{A} is algorithm for finding duplicate. Alice puts *i* in stream for each $i \in supp(x)$ then sends memory contents of \mathcal{A} to Bob as message. Bob continues running \mathcal{A} by appending to stream n + 1 - |supp(x)| indices $i \in [n] \setminus supp(y)$. Then Bob outputs $\mathcal{A}.query()$.

The Main Event Proof of our new lower bound for $\mathbf{R}^{\rightarrow, pub}_{\delta}(\mathbf{UR}^{\subset, +})$

► Idea: if *P* is efficient 1-way protocol for UR^{C,+}, use it to design efficient Las Vegas encoding for ^[n]_m for particular *m* (encoding length is random variable; decoder always succeeds)

- ► Idea: if P is efficient 1-way protocol for UR^{C,+}, use it to design efficient Las Vegas encoding for (^[n]_m) for particular m (encoding length is random variable; decoder always succeeds)
- Any such encoding scheme needs ≥ lg(ⁿ_m) = Ω(m log(n/m)) bits in expectation ⇒ lower bound for P

- Any such encoding scheme needs ≥ lg(ⁿ_m) = Ω(m log(n/m)) bits in expectation ⇒ lower bound for P
- Notation:
 - ► *E*: encoder
 - ► D: decoder
 - ▶ Alice: 1^{st} player in supposed efficient protocol \mathcal{P} for **UR**^{C,+}
 - ▶ Bob: 2^{nd} player in supposed efficient protocol \mathcal{P} for **UR**^{C,+}
 - S: subset of [n], |S| = m, to be encoded
 - ▶ $\mathbf{1}_S \in \{0,1\}^n$ is indicator vector of S

- Any such encoding scheme needs ≥ lg(ⁿ_m) = Ω(m log(n/m)) bits in expectation ⇒ lower bound for P
- Notation:
 - ► *E*: encoder
 - ► D: decoder
 - ▶ Alice: 1^{st} player in supposed efficient protocol \mathcal{P} for $\mathbf{UR}^{\subset,+}$
 - ▶ Bob: 2^{nd} player in supposed efficient protocol \mathcal{P} for **UR**^{C,+}
 - S: subset of [n], |S| = m, to be encoded
 - ▶ $\mathbf{1}_{S} \in \{0,1\}^{n}$ is indicator vector of S
 - ► The + in UR^{C,+} will mean E/D both know m (not a big deal: otherwise E could write m down)

Simple lower bound

E(S) is Alice's message $M \in \{0,1\}^s$ to Bob on input $x = \mathbf{1}_S$.

Simple lower bound

E(S) is Alice's message $M \in \{0,1\}^s$ to Bob on input $x = \mathbf{1}_S$.

1: procedure D(M) $T \leftarrow \emptyset$ 2: **for** r = 1, ..., m **do** 3: Let *i* be Bob's output upon receiving message M from 4: Alice when Bob's input is $\mathbf{1}_{T}$ $T \leftarrow T \cup \{i\}$ 5: end for 6: 7: return T

8: end procedure

Simple lower bound

E(S) is Alice's message $M \in \{0,1\}^s$ to Bob on input $x = \mathbf{1}_S$.

1: procedure D(M)2: $T \leftarrow \emptyset$ 3: for r = 1, ..., m do 4: Let *i* be Bob's output upon receiving message *M* from Alice when Bob's input is $\mathbf{1}_T$ 5: $T \leftarrow T \cup \{i\}$ 6: end for 7: return T8: end procedure

*This is, hopefully, a Monte Carlo encoding/decoding scheme Want $\mathbb{P}(T = S)$ to be large (at least 1/2, say)

► Original failure probability of *P* is δ ⇒ failure probability of decoder is δm < 1/2 for δ < 1/2/2 m</p>

• Original failure probability of \mathcal{P} is δ \implies failure probability of decoder is $\delta m < 1/2$ for $\delta < \frac{1}{2m}$ \implies can set m = n/2 and get $s = \Omega(n)$ for $\delta < 1/n$

Original failure probability of *P* is δ
 ⇒ failure probability of decoder is δm < 1/2 for δ < 1/2m
 ⇒ can set m = n/2 and get s = Ω(n) for δ < 1/n
 Problem: There's an Ω(log³ n) upper bound for δ = 1

▶ **Problem:** There's an $O(\log^3 n)$ upper bound for $\delta = \frac{1}{poly(n)}$ (Alice sends memory of ℓ_0 -sampler sketch to Bob, run on $\mathbf{1}_S$)

- Original failure probability of *P* is δ
 ⇒ failure probability of decoder is δm < 1/2 for δ < 1/2m
 ⇒ can set m = n/2 and get s = Ω(n) for δ < 1/n
- ▶ **Problem:** There's an $O(\log^3 n)$ upper bound for $\delta = \frac{1}{poly(n)}$ (Alice sends memory of ℓ_0 -sampler sketch to Bob, run on $\mathbf{1}_S$)
- Problem is even worse: E(S) could have first applied error-correcting code to 1_S to obtain S' ∈ [Θ(n)], then Bob could recover S with good probability even for δ a constant! But for constant δ, there's O(log² n) upper bound for UR^{C,+}.

Original failure probability of *P* is δ
 ⇒ failure probability of decoder is δm < 1/2 for δ < 1/2m
 ⇒ can set m = n/2 and get s = Ω(n) for δ < 1/n

• **Problem:** There's an $O(\log^3 n)$ upper bound for $\delta = \frac{1}{poly(n)}$ (Alice sends memory of ℓ_0 -sampler sketch to Bob, run on $\mathbf{1}_S$)

- Problem is even worse: E(S) could have first applied error-correcting code to 1_S to obtain S' ∈ [Θ(n)], then Bob could recover S with good probability even for δ a constant! But for constant δ, there's O(log² n) upper bound for UR^{C,+}.
- What went wrong here?

• Original failure probability of \mathcal{P} is δ \implies failure probability of decoder is $\delta m < 1/2$ for $\delta < \frac{1}{2m}$

 \implies can set m = n/2 and get $s = \Omega(n)$ for $\delta < 1/n$

- ▶ **Problem:** There's an $O(\log^3 n)$ upper bound for $\delta = \frac{1}{poly(n)}$ (Alice sends memory of ℓ_0 -sampler sketch to Bob, run on $\mathbf{1}_S$)
- Problem is even worse: E(S) could have first applied error-correcting code to 1_S to obtain S' ∈ [Θ(n)], then Bob could recover S with good probability even for δ a constant! But for constant δ, there's O(log² n) upper bound for UR^{C,+}.
- What went wrong here?
- Adaptivity!!!
- Correctness of *P* says ∀x, y, P(*P* succeeds on x, y) ≥ 1 − δ.
 Bob not allowed to choose y based on *P*'s random coins.

Fix S and define event \mathcal{E}_T : \mathcal{P} succeeds when $x = \mathbf{1}_S$, $y = \mathbf{1}_T$.

Fix S and define event E_T: P succeeds when x = 1_S, y = 1_T.
If ∩_{T⊆S} E_T occurs, then decoder succeeds.

Fix S and define event E_T: P succeeds when x = 1_S, y = 1_T.
If ∩_{T⊊S} E_T occurs, then decoder succeeds.

$$\mathbb{P}(\neg(\bigcap_{T\subsetneq S}\mathcal{E}_{T})) = \mathbb{P}(\bigcup_{T\subsetneq S}\overline{\mathcal{E}_{T}}) < \delta 2^{m}.$$

set $m = \lfloor \lg(1/\delta)
floor - 1$, so decoder succeeds w.p. > 1/2

Fix S and define event E_T: P succeeds when x = 1_S, y = 1_T.
If ∩_{T⊆S} E_T occurs, then decoder succeeds.

$$\mathbb{P}(\neg(\bigcap_{T\subsetneq S}\mathcal{E}_{\mathcal{T}})) = \mathbb{P}(\bigcup_{T\subsetneq S}\overline{\mathcal{E}_{\mathcal{T}}}) < \delta 2^{m}.$$

set $m = \lfloor \lg(1/\delta) \rfloor - 1$, so decoder succeeds w.p. > 1/2 $\blacktriangleright \implies s = |M| = \Omega(m \log(n/m)) = \Omega(\log(1/\delta) \log \frac{n}{\log(1/\delta)})$

Fix S and define event E_T: P succeeds when x = 1_S, y = 1_T.
If ∩_{T⊆S} E_T occurs, then decoder succeeds.

$$\mathbb{P}(\neg(\bigcap_{T\subsetneq S}\mathcal{E}_T))=\mathbb{P}(\bigcup_{T\subsetneq S}\overline{\mathcal{E}_T})<\delta 2^m.$$

set $m = \lfloor \lg(1/\delta) \rfloor - 1$, so decoder succeeds w.p. > 1/2

 $\blacktriangleright \implies s = |M| = \Omega(m \log(n/m)) = \Omega(\log(1/\delta) \log \frac{n}{\log(1/\delta)})$

▶ to get optimal lower bound, need another log $\frac{n}{\log(1/\delta)}$ factor

Optimal lower bound for $\mathsf{R}^{ o, pub}_{\delta}(\mathsf{UR}^{\subset,+})$

Moral of our work: it's ok to make adaptive queries to mechanism that are not independent of the randomness of the mechanism, **if the amount of dependence can be controlled**

Optimal lower bound for $\mathsf{R}^{ ightarrow, pub}_{\delta}(\mathsf{U}\mathsf{R}^{\subset,+})$

Moral of our work: it's ok to make adaptive queries to mechanism that are not independent of the randomness of the mechanism, **if the amount of dependence can be controlled**

Lemma [NPW'17]: Consider $f: \{0,1\}^b \times \{0,1\}^q \rightarrow \{0,1\}$ and $X \in \{0,1\}^b$ uniformly random. If $\forall y \in \{0,1\}^q$, $\mathbb{P}(f(X,y)=1) \leq \delta$ where $0 < \delta < 1$, then for any random variable Y supported on $\{0,1\}^q$,

$$\mathbb{P}(f(X,Y)=1) \leq rac{I(X;Y)+1}{\lograc{1}{\delta}},$$

where I(X; Y) is the mutual information between X and Y.

Optimal lower bound for $\mathsf{R}^{ ightarrow, pub}_{\delta}(\mathsf{U}\mathsf{R}^{\subset,+})$

Moral of our work: it's ok to make adaptive queries to mechanism that are not independent of the randomness of the mechanism, **if the amount of dependence can be controlled**

Lemma [NPW'17]: Consider $f: \{0,1\}^b \times \{0,1\}^q \rightarrow \{0,1\}$ and $X \in \{0,1\}^b$ uniformly random. If $\forall y \in \{0,1\}^q$, $\mathbb{P}(f(X,y)=1) \leq \delta$ where $0 < \delta < 1$, then for any random variable Y supported on $\{0,1\}^q$,

$$\mathbb{P}(f(X,Y)=1) \leq rac{I(X;Y)+1}{\lograc{1}{\delta}},$$

where I(X; Y) is the mutual information between X and Y.

Interpretation: Fix input x to Alice. X is internal randomness of \mathcal{P} , and f(x, y) is 1 iff \mathcal{P} is incorrect when Bob has input y.

Adaptivity lemma

Lemma [NPW'17]: Consider $f: \{0,1\}^b \times \{0,1\}^q \rightarrow \{0,1\}$ and $X \in \{0,1\}^b$ uniformly random. If $\forall y \in \{0,1\}^q$, $\mathbb{P}(f(X,y)=1) \leq \delta$ where $0 < \delta < 1$, then for any random variable Y supported on $\{0,1\}^q$,

$$\mathbb{P}(f(X,Y)=1) \leq rac{I(X;Y)+1}{\lograc{1}{\delta}},$$

where I(X; Y) is the mutual information between X and Y.

Adaptivity lemma

Lemma [NPW'17]: Consider $f: \{0,1\}^b \times \{0,1\}^q \rightarrow \{0,1\}$ and $X \in \{0,1\}^b$ uniformly random. If $\forall y \in \{0,1\}^q$, $\mathbb{P}(f(X,y)=1) \leq \delta$ where $0 < \delta < 1$, then for any random variable Y supported on $\{0,1\}^q$,

$$\mathbb{P}(f(X,Y)=1) \leq rac{I(X;Y)+1}{\lograc{1}{\delta}},$$

where I(X; Y) is the mutual information between X and Y.

Is the above lemma tight?

Yes. $x, y \in [n]$, X is uniform. f(x, y) = 1 iff x = y. $\delta = \frac{1}{n}$.

Adaptivity lemma

Lemma [NPW'17]: Consider $f: \{0,1\}^b \times \{0,1\}^q \rightarrow \{0,1\}$ and $X \in \{0,1\}^b$ uniformly random. If $\forall y \in \{0,1\}^q$, $\mathbb{P}(f(X,y)=1) \leq \delta$ where $0 < \delta < 1$, then for any random variable Y supported on $\{0,1\}^q$,

$$\mathbb{P}(f(X,Y)=1) \leq rac{I(X;Y)+1}{\lograc{1}{\delta}},$$

where I(X; Y) is the mutual information between X and Y.

Is the above lemma tight?

Yes. $x, y \in [n]$, X is uniform. f(x, y) = 1 iff x = y. $\delta = \frac{1}{n}$.

▶ consider this Y: equals X w.p. $\frac{t}{\log n}$, and otherwise is uniform

Adaptivity lemma

Lemma [NPW'17]: Consider $f: \{0,1\}^b \times \{0,1\}^q \rightarrow \{0,1\}$ and $X \in \{0,1\}^b$ uniformly random. If $\forall y \in \{0,1\}^q$, $\mathbb{P}(f(X,y)=1) \leq \delta$ where $0 < \delta < 1$, then for any random variable Y supported on $\{0,1\}^q$,

$$\mathbb{P}(f(X,Y)=1) \leq rac{I(X;Y)+1}{\lograc{1}{\delta}},$$

where I(X; Y) is the mutual information between X and Y.

Is the above lemma tight?

Yes. $x, y \in [n]$, X is uniform. f(x, y) = 1 iff x = y. $\delta = \frac{1}{n}$.

▶ consider this Y: equals X w.p. $\frac{t}{\log n}$, and otherwise is uniform

$$\blacktriangleright I(X;Y) = t$$

Adaptivity lemma

Lemma [NPW'17]: Consider $f: \{0,1\}^b \times \{0,1\}^q \rightarrow \{0,1\}$ and $X \in \{0,1\}^b$ uniformly random. If $\forall y \in \{0,1\}^q$, $\mathbb{P}(f(X,y)=1) \leq \delta$ where $0 < \delta < 1$, then for any random variable Y supported on $\{0,1\}^q$,

$$\mathbb{P}(f(X,Y)=1) \leq rac{I(X;Y)+1}{\lograc{1}{\delta}},$$

where I(X; Y) is the mutual information between X and Y.

Is the above lemma tight?

Yes. $x, y \in [n]$, X is uniform. f(x, y) = 1 iff x = y. $\delta = \frac{1}{n}$.

▶ consider this Y: equals X w.p. $\frac{t}{\log n}$, and otherwise is uniform

$$\blacktriangleright I(X;Y) = t$$

$$\blacktriangleright \mathbb{P}(f(X,Y)=1) = \frac{t}{\log n} \cdot 1 + (1 - \frac{t}{\log n}) \cdot \frac{1}{n} \approx \frac{t}{\log n}$$

Rest of talk

- 1. Proving the lemma (short).
- 2. Using the lemma to lower bound $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}^{\subset,+})$.

Rest of talk

- 1. Proving the lemma (short).
- 2. Using the lemma to lower bound $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}^{\subset,+})$.

Lemma:
$$\mathbb{P}(f(X, Y) = 1) \leq \frac{I(X; Y) + 1}{\log \frac{1}{x}}$$

Lemma:
$$\mathbb{P}(f(X, Y) = 1) \leq \frac{I(X;Y)+1}{\log \frac{1}{\delta}}$$

- Equivalent to prove $I(X; Y) \ge (\mathbb{E} f(X, Y)) \cdot \log \frac{1}{\delta} 1$
- ► I(X; Y) = H(X) H(X|Y) = b H(X|Y).

Want to upper bound H(X|Y).

Lemma:
$$\mathbb{P}(f(X, Y) = 1) \leq \frac{I(X;Y)+1}{\log \frac{1}{\delta}}$$

- Equivalent to prove $I(X; Y) \ge (\mathbb{E} f(X, Y)) \cdot \log \frac{1}{\delta} 1$
- ► I(X; Y) = H(X) H(X|Y) = b H(X|Y). Want to upper bound H(X|Y).
- Consider communication problem: Alice gets X, Y, Bob only gets Y. Expected number of bits Alice needs to send Bob so he can recover X with probability 1 is exactly H(X|Y).

Lemma:
$$\mathbb{P}(f(X, Y) = 1) \leq \frac{I(X;Y)+1}{\log \frac{1}{\delta}}$$

- Equivalent to prove $I(X; Y) \ge (\mathbb{E} f(X, Y)) \cdot \log \frac{1}{\delta} 1$
- ► I(X; Y) = H(X) H(X|Y) = b H(X|Y). Want to upper bound H(X|Y).
- Consider communication problem: Alice gets X, Y, Bob only gets Y. Expected number of bits Alice needs to send Bob so he can recover X with probability 1 is exactly H(X|Y).
- A cheap protocol: Alice sends f(X, Y) (1 bit). If f(X, Y) = 0, also sends all of X (b bits). Else sends index of X in {x : f(x, Y) = 1} (log(δ2^b) = b − log 1/δ bits).

Lemma:
$$\mathbb{P}(f(X, Y) = 1) \leq \frac{I(X;Y)+1}{\log \frac{1}{\delta}}$$

- Equivalent to prove $I(X; Y) \ge (\mathbb{E} f(X, Y)) \cdot \log \frac{1}{\delta} 1$
- ► I(X; Y) = H(X) H(X|Y) = b H(X|Y). Want to upper bound H(X|Y).
- Consider communication problem: Alice gets X, Y, Bob only gets Y. Expected number of bits Alice needs to send Bob so he can recover X with probability 1 is exactly H(X|Y).
- A cheap protocol: Alice sends f(X, Y) (1 bit). If f(X, Y) = 0, also sends all of X (b bits). Else sends index of X in {x : f(x, Y) = 1} (log(δ2^b) = b log 1/δ bits).
 ⇒ H(X|Y) ≤ 1 + b (𝔼 f(X, Y)) · log 1/δ as desired.

Rest of talk

- 1. Proving the lemma (short).
- 2. Using the lemma to lower bound $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}^{\subset,+})$.

Rest of talk

- 1. Proving the lemma (short).
- 2. Using the lemma to lower bound $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}^{\subset,+})$.

- **Our approach:** Give up on *D* recovering all of *S* from *M*.
- ► D will recover subset $A \subset S$, $\mathbb{E} |A| = \Theta(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}})$ from

M. *E*(*S*) then is the concatenation of *M*, together with the elements $B = S \setminus A$ explicitly written down (log $\binom{n}{|B|}$ bits).

- Our approach: Give up on *D* recovering all of *S* from *M*.
- D will recover subset A ⊂ S, E |A| = Θ(log ¹/_δ log ⁿ/_{log ¹/_δ) from M. E(S) then is the concatenation of M, together with the elements B = S\A explicitly written down (log ⁿ/_{|B|}) bits).}
- A comes from $R = \Theta(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}})$ iterations in decoder. Will have \mathcal{P} succeeding in $\frac{R}{2}$ iterations in expectation.

- Our approach: Give up on *D* recovering all of *S* from *M*.
- D will recover subset A ⊂ S, E |A| = Θ(log ¹/_δ log ⁿ/_{log ¹/_δ) from M. E(S) then is the concatenation of M, together with the elements B = S\A explicitly written down (log ⁿ/_{|B|}) bits).}
- ► A comes from $R = \Theta(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}})$ iterations in decoder. Will have \mathcal{P} succeeding in $\frac{R}{2}$ iterations in expectation.
- ▶ In light of Lemma, *D* will pretend to be Bob in each of the *R* iterations such that for all $j \in [R]$, y_j in iteration *j* has mutual information $\leq \frac{1}{2} \log \frac{1}{\delta} 1$ with the randomness used by \mathcal{P} .

- **Our approach:** Give up on *D* recovering all of *S* from *M*.
- D will recover subset A ⊂ S, E |A| = Θ(log ¹/_δ log ⁿ/_{log ¹/_δ) from M. E(S) then is the concatenation of M, together with the elements B = S\A explicitly written down (log ⁿ/_{|B|}) bits).}
- ► A comes from $R = \Theta(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}})$ iterations in decoder. Will have \mathcal{P} succeeding in $\frac{R}{2}$ iterations in expectation.
- ▶ In light of Lemma, *D* will pretend to be Bob in each of the *R* iterations such that for all $j \in [R]$, y_j in iteration *j* has mutual information $\leq \frac{1}{2} \log \frac{1}{\delta} 1$ with the randomness used by \mathcal{P} .
- After iteration j, D randomly adds t_j elements of B to T to dilute info about elements of S recovered from M so far.

- Our approach: Give up on *D* recovering all of *S* from *M*.
- D will recover subset A ⊂ S, E |A| = Θ(log ¹/_δ log ⁿ/_{log ¹/_δ) from M. E(S) then is the concatenation of M, together with the elements B = S\A explicitly written down (log ⁿ/_{|B|}) bits).}
- A comes from $R = \Theta(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}})$ iterations in decoder. Will have \mathcal{P} succeeding in $\frac{R}{2}$ iterations in expectation.
- ▶ In light of Lemma, *D* will pretend to be Bob in each of the *R* iterations such that for all $j \in [R]$, y_j in iteration *j* has mutual information $\leq \frac{1}{2} \log \frac{1}{\delta} 1$ with the randomness used by \mathcal{P} .
- After iteration j, D randomly adds t_j elements of B to T to dilute info about elements of S recovered from M so far.
- ▶ Need t_j big enough to get enough information dilution. This forces $R = O(\log \frac{1}{\delta} \log \frac{m}{\log \frac{1}{\delta}})$.

- Our approach: Give up on *D* recovering all of *S* from *M*.
- D will recover subset A ⊂ S, E |A| = Θ(log ¹/_δ log ⁿ/_{log ¹/_δ) from M. E(S) then is the concatenation of M, together with the elements B = S\A explicitly written down (log ⁿ/_{|B|}) bits).}
- A comes from $R = \Theta(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}})$ iterations in decoder. Will have \mathcal{P} succeeding in $\frac{R}{2}$ iterations in expectation.
- ▶ In light of Lemma, *D* will pretend to be Bob in each of the *R* iterations such that for all $j \in [R]$, y_j in iteration *j* has mutual information $\leq \frac{1}{2} \log \frac{1}{\delta} 1$ with the randomness used by \mathcal{P} .
- After iteration j, D randomly adds t_j elements of B to T to dilute info about elements of S recovered from M so far.
- Need t_j big enough to get enough information dilution. This forces $R = O(\log \frac{1}{\delta} \log \frac{m}{\log \frac{1}{s}})$.

► Will get lower bound $|M| = \Omega(R \lg \frac{n}{m}) = \Omega(\lg \frac{1}{\delta} \lg \frac{m}{\lg \frac{1}{\delta}} \lg \frac{n}{m})$ set $m = \sqrt{n \log \frac{1}{\delta}}$

Variables shared by E and D.

1:
$$m \leftarrow \lfloor \sqrt{n \log \frac{1}{\delta}} \rfloor$$

2: $K \leftarrow \lfloor \frac{1}{16} \log \frac{1}{\delta} \rfloor$
3: $R \leftarrow \lfloor K \log(m/4K) \rfloor$
4: for $r = 0, ..., R$ do
5: $n_r \leftarrow \lfloor m \cdot 2^{-\frac{r}{K}} \rfloor \qquad \triangleright |S_r| = n_r$, and $\forall r \ n_r - n_{r+1} \ge 2$
6: end for
7: π is a random permutation on $[n]$

Variables shared by E and D.

1:
$$m \leftarrow \lfloor \sqrt{n \log \frac{1}{\delta}} \rfloor$$

2: $K \leftarrow \lfloor \frac{1}{16} \log \frac{1}{\delta} \rfloor$
3: $R \leftarrow \lfloor K \log(m/4K) \rfloor$
4: for $r = 0, \dots, R$ do
5: $n_r \leftarrow \lfloor m \cdot 2^{-\frac{r}{K}} \rfloor \qquad \triangleright |S_r| = n_r$, and $\forall r \ n_r - n_{r+1} \ge 2$
6: end for
7: π is a random permutation on $[n]$

 n_j is such that after j iterations, D has already recovered $m - n_j$ elements of $S(S_j, |S_j| = n_j$, remains to be recovered)

Decoding algorithm to recover $S \subset [n]$, |S| = m

- 1: procedure D(M, B, b)
 - \triangleright *M* is Alice(**1**_{*S*})
 - $\triangleright b \in \{0,1\}^R$ indicates rounds in which Bob succeeds
 - \triangleright B contains all elements of S that D doesn't recover via M

Decoding algorithm to recover $S \subset [n]$, |S| = m

1: procedure D(M, B, b) $\triangleright M$ is Alice $(\mathbf{1}_S)$ $\triangleright b \in \{0, 1\}^R$ indicates rounds in which Bob succeeds $\triangleright B$ contains all elements of *S* that *D* doesn't recover via *M* 2: $A \leftarrow \emptyset$ \triangleright the subset of *S* we recover just from *M* 3: $T_0 \leftarrow \emptyset$ \triangleright subset of *S* we've built up so far

Decoding algorithm to recover $S \subset [n]$, |S| = m

1: procedure D(M, B, b) $\triangleright M$ is Alice $(\mathbf{1}_S)$ $\triangleright b \in \{0, 1\}^R$ indicates rounds in which Bob succeeds $\triangleright B$ contains all elements of S that D doesn't recover via M2: $A \leftarrow \emptyset$ \triangleright the subset of S we recover just from M3: $T_0 \leftarrow \emptyset$ \triangleright subset of S we've built up so far 4: for r = 1, ..., R do \triangleright each iteration tries to recover 1 elt via M5: $T_r \leftarrow T_{r-1}$

Optimal lower bound for $\mathsf{R}_{\delta}^{ ightarrow, pub}(\mathsf{UR}^{\sub,+})$

Decoding algorithm to recover $S \subset [n]$, |S| = m

1: procedure
$$D(M, B, b)$$

 $\triangleright M$ is Alice $(\mathbf{1}_S)$
 $\triangleright b \in \{0, 1\}^R$ indicates rounds in which Bob succeeds
 $\triangleright B$ contains all elements of S that D doesn't recover via M
2: $A \leftarrow \emptyset$ \triangleright the subset of S we recover just from M
3: $T_0 \leftarrow \emptyset$ \triangleright subset of S we've built up so far
4: for $r = 1, ..., R$ do \triangleright each iteration tries to recover 1 elt via M
5: $T_r \leftarrow T_{r-1}$
6: if $b_r = 1$ then \triangleright this means Bob succeeds in round r

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}^{\subset,+})$

Decoding algorithm to recover $S \subset [n]$, |S| = m

1: **procedure**
$$D(M, B, b)$$

 $\triangleright M$ is Alice $(\mathbf{1}_{S})$
 $\triangleright b \in \{0, 1\}^{R}$ indicates rounds in which Bob succeeds
 $\triangleright B$ contains all elements of S that D doesn't recover via M
2: $A \leftarrow \emptyset$ \triangleright the subset of S we recover just from M
3: $T_{0} \leftarrow \emptyset$ \triangleright subset of S we recover just from M
4: **for** $r = 1, \dots, R$ **do** \triangleright each iteration tries to recover 1 elt via M
5: $T_{r} \leftarrow T_{r-1}$
6: **if** $b_{r} = 1$ **then** \triangleright this means Bob succeeds in round r
7: $s_{r} \leftarrow \text{Bob}(M, \mathbf{1}_{T_{r-1}})$ \triangleright Invariant: $T_{r} = S \setminus S_{r}$
8: $A \leftarrow A \cup \{s_{r}\}, T_{r} \leftarrow T_{r} \cup \{s_{r}\}$
9: **end if**

Decoding algorithm to recover $S \subset [n]$, |S| = m

1: procedure D(M, B, b) \triangleright *M* is Alice(1₅) $b \in \{0,1\}^R$ indicates rounds in which Bob succeeds \triangleright B contains all elements of S that D doesn't recover via M $A \leftarrow \emptyset$ \triangleright the subset of S we recover just from M 2: $T_0 \leftarrow \emptyset$ \triangleright subset of S we've built up so far 3: 4: for r = 1, ..., R do \triangleright each iteration tries to recover 1 elt via M 5: $T_r \leftarrow T_{r-1}$ if $b_r = 1$ then \triangleright this means Bob succeeds in round r 6: \triangleright Invariant: $T_r = S \setminus S_r$ 7: $s_r \leftarrow \operatorname{Bob}(M, \mathbf{1}_{T_{r-1}})$ $A \leftarrow A \cup \{s_r\}, T_r \leftarrow T_r \cup \{s_r\}$ 8: 9: end if 10: Insert $m - n_r - |T_r|$ items from $B \setminus T_r$ into T_r with smallest π_i \triangleright "Differential Privacy" step. Still n_r elements left to recover. end for 11:

Optimal lower bound for $\mathbf{R}_{\delta}^{\rightarrow,pub}(\mathbf{UR}^{\subset,+})$

Decoding algorithm to recover $S \subset [n]$, |S| = m

1: procedure D(M, B, b) \triangleright *M* is Alice(1₅) $b \in \{0,1\}^R$ indicates rounds in which Bob succeeds \triangleright B contains all elements of S that D doesn't recover via M $A \leftarrow \emptyset$ \triangleright the subset of S we recover just from M 2: $T_0 \leftarrow \emptyset$ \triangleright subset of S we've built up so far 3: 4: for r = 1, ..., R do \triangleright each iteration tries to recover 1 elt via M 5: $T_r \leftarrow T_{r-1}$ if $b_r = 1$ then \triangleright this means Bob succeeds in round r 6: \triangleright Invariant: $T_r = S \setminus S_r$ 7: $s_r \leftarrow \operatorname{Bob}(M, \mathbf{1}_{T_{r-1}})$ $A \leftarrow A \cup \{s_r\}, T_r \leftarrow T_r \cup \{s_r\}$ 8: 9: end if 10: Insert $m - n_r - |T_r|$ items from $B \setminus T_r$ into T_r with smallest π_i \triangleright "Differential Privacy" step. Still n_r elements left to recover. end for 11:return $B \cup A$ 12:13: end procedure

Encoding algorithm for $S \subset [n]$, |S| = m

- 1: procedure $\overline{E(S)}$
- 2: $M \leftarrow \operatorname{Alice}(\mathbf{1}_S)$
- 3: $A \leftarrow \emptyset$

 \triangleright the set *D* recovers just from *M*

Encoding algorithm for $S \subset [n]$, |S| = m

- 1: procedure E(S)
- $M \leftarrow \operatorname{Alice}(\mathbf{1}_S)$ 2:
- 3: $A \leftarrow \emptyset$ \triangleright the set *D* recovers just from *M* 4:
 - $S_0 \leftarrow S$ \triangleright at end of round r, D still needs to recover S_r

Optimal lower bound for $\mathsf{R}^{ o, \mathsf{pub}}_{\delta}(\mathsf{UR}^{ o, +})$

Encoding algorithm for $S \subset [n]$, |S| = m

1: procedure E(S)2: $M \leftarrow \operatorname{Alice}(\mathbf{1}_S)$ 3: $A \leftarrow \emptyset$ \triangleright the set D recovers just from M4: $S_0 \leftarrow S$ \triangleright at end of round r, D still needs to recover S_r 5: for $r = 1, \ldots, R$ do 6: $s_r \leftarrow \operatorname{Bob}(M, \mathbf{1}_{S \setminus S_{r-1}})$ $\triangleright s_r \in S_{r-1}$ found in round r

Encoding algorithm for $S \subset [n]$, |S| = m

1: procedure E(S)2: $M \leftarrow \text{Alice}(\mathbf{1}_{5})$ 3: $A \leftarrow \emptyset$ \triangleright the set *D* recovers just from *M* $S_0 \leftarrow S$ \triangleright at end of round r, D still needs to recover S_r 4: for r = 1, ..., R do 5: $\triangleright s_r \stackrel{?}{\in} S_{r-1}$ found in round r $s_r \leftarrow \operatorname{Bob}(M, \mathbf{1}_{S \setminus S_{r-1}})$ 6: 7: $S_r \leftarrow S_{r-1}$ if $s_r \in S_{r-1}$ then \triangleright i.e. if s_r is a valid sample 8:

Encoding algorithm for $S \subset [n]$, |S| = m

1: procedure E(S)2: $M \leftarrow \text{Alice}(\mathbf{1}_{5})$ 3: $A \leftarrow \emptyset$ \triangleright the set D recovers just from M $S_0 \leftarrow S$ \triangleright at end of round r, D still needs to recover S_r 4: for r = 1, ..., R do 5: $\triangleright s_r \stackrel{?}{\in} S_{r-1}$ found in round r $s_r \leftarrow \operatorname{Bob}(M, \mathbf{1}_{S \setminus S_{r-1}})$ 6: 7: $S_r \leftarrow S_{r-1}$ if $s_r \in S_{r-1}$ then \triangleright i.e. if s_r is a valid sample 8: $b_r \leftarrow 1 \qquad \triangleright \ b \in \{0,1\}^R$ indicating which rounds succeed 9: $A \leftarrow A \cup \{s_r\}, S_r \leftarrow S_r \setminus \{s_r\}$ 10:

Encoding algorithm for $S \subset [n]$, |S| = m

1: procedure E(S)2: $M \leftarrow \text{Alice}(\mathbf{1}_{5})$ 3: $A \leftarrow \emptyset$ \triangleright the set *D* recovers just from *M* $S_0 \leftarrow S$ \triangleright at end of round r, D still needs to recover S_r 4: for r = 1, ..., R do 5: $\triangleright s_r \in S_{r-1}$ found in round r $s_r \leftarrow \operatorname{Bob}(M, \mathbf{1}_{S \setminus S_{r-1}})$ 6: 7: $S_r \leftarrow S_{r-1}$ if $s_r \in S_{r-1}$ then \triangleright i.e. if s_r is a valid sample 8: $b_r \leftarrow 1 \qquad \triangleright \ b \in \{0,1\}^R$ indicating which rounds succeed 9: $A \leftarrow A \cup \{s_r\}, S_r \leftarrow S_r \setminus \{s_r\}$ 10: else 11:12: $b_r \leftarrow 0$ 13: end if

Encoding algorithm for $S \subset [n]$, |S| = m

1: procedure E(S)2: $M \leftarrow \text{Alice}(\mathbf{1}_{5})$ 3: $A \leftarrow \emptyset$ \triangleright the set *D* recovers just from *M* 4: $S_0 \leftarrow S$ \triangleright at end of round r, D still needs to recover S_r for r = 1, ..., R do 5: $\triangleright s_r \in S_{r-1}$ found in round r $s_r \leftarrow \operatorname{Bob}(M, \mathbf{1}_{S \setminus S_{r-1}})$ 6: $S_r \leftarrow S_{r-1}$ 7: if $s_r \in S_{r-1}$ then \triangleright i.e. if s_r is a valid sample 8: $b_r \leftarrow 1 \qquad \triangleright \ b \in \{0,1\}^{\overline{R}}$ indicating which rounds succeed 9: $A \leftarrow A \cup \{s_r\}, S_r \leftarrow S_r \setminus \{s_r\}$ 10: else 11:12: $b_r \leftarrow 0$ 13: end if remove $|S_r| - n_r$ elts from S_r with smallest $\pi_i \triangleright$ now $|S_r| = n_r$ 14:end for 15:

Encoding algorithm for $S \subset [n]$, |S| = m

1: procedure E(S)2: $M \leftarrow \text{Alice}(\mathbf{1}_{5})$ 3: $A \leftarrow \emptyset$ \triangleright the set D recovers just from M 4: $S_0 \leftarrow S$ \triangleright at end of round r, D still needs to recover S_r for r = 1, ..., R do 5: $\triangleright s_r \in S_{r-1}$ found in round r $s_r \leftarrow \operatorname{Bob}(M, \mathbf{1}_{S \setminus S_{r-1}})$ 6: $S_r \leftarrow S_{r-1}$ 7: if $s_r \in S_{r-1}$ then \triangleright i.e. if s_r is a valid sample 8: $b_r \leftarrow 1 \qquad \triangleright \ b \in \{0,1\}^R$ indicating which rounds succeed 9: $A \leftarrow A \cup \{s_r\}, S_r \leftarrow S_r \setminus \{s_r\}$ 10: else 11:12: $b_r \leftarrow 0$ 13: end if remove $|S_r| - n_r$ elts from S_r with smallest $\pi_i \ge \text{now} |S_r| = n_r$ 14:15: end for return $(M, S \setminus A, b)$ 16:17: end procedure

Recall $K = \lfloor \frac{1}{16} \log \frac{1}{\delta} \rfloor$. Note $n_r = 2^{-r/K} m \approx (1 - 1/K)^r m$. X is randomness used by **UR**^{C,+} protocol.

Recall $K = \lfloor \frac{1}{16} \log \frac{1}{\delta} \rfloor$. Note $n_r = 2^{-r/K} m \approx (1 - 1/K)^r m$. X is randomness used by $\mathbf{UR}^{\subset,+}$ protocol.

Lemma: If in each round we add a random 1/K-fraction of the remaining elements of S to T_r , then for all $r \in [R]$, $I(X; S_r) \le 6K$.

Recall $K = \lfloor \frac{1}{16} \log \frac{1}{\delta} \rfloor$. Note $n_r = 2^{-r/K} m \approx (1 - 1/K)^r m$. X is randomness used by $\mathbf{UR}^{\subset,+}$ protocol.

Lemma: If in each round we add a random 1/K-fraction of the remaining elements of S to T_r , then for all $r \in [R]$, $I(X; S_r) \leq 6K$. **Proof:**

 $I(X; S_r) = H(S_r) - H(S_r|X)$

Recall $K = \lfloor \frac{1}{16} \log \frac{1}{\delta} \rfloor$. Note $n_r = 2^{-r/K} m \approx (1 - 1/K)^r m$. X is randomness used by $\mathbf{UR}^{\subset,+}$ protocol.

Lemma: If in each round we add a random 1/K-fraction of the remaining elements of S to T_r , then for all $r \in [R]$, $I(X; S_r) \leq 6K$. **Proof:**

►
$$I(X; S_r) = H(S_r) - H(S_r|X)$$

► $|S_r| = n_r$ and $|S| = m$, so $H(S_r) \le \log {m \choose n_r}$

Recall $K = \lfloor \frac{1}{16} \log \frac{1}{\delta} \rfloor$. Note $n_r = 2^{-r/K} m \approx (1 - 1/K)^r m$. X is randomness used by $\mathbf{UR}^{\subset,+}$ protocol.

Lemma: If in each round we add a random 1/K-fraction of the remaining elements of S to T_r , then for all $r \in [R]$, $I(X; S_r) \leq 6K$. **Proof:**

 $g\binom{m}{n_r}$

$$I(X; S_r) = H(S_r) - H(S_r|X)$$

$$S_r| = n_r \text{ and } |S| = m_r \text{ so } H(S_r) \le |c|$$

▶ We show that for any
$$T \in \binom{S}{n_r}$$
 and $x = \mathbb{P}(S_r = T | X = x) \le p = \frac{2^{6K}}{\binom{m}{n_r}}$

Recall $K = \lfloor \frac{1}{16} \log \frac{1}{\delta} \rfloor$. Note $n_r = 2^{-r/K} m \approx (1 - 1/K)^r m$. X is randomness used by **UR**^{\subset ,+} protocol.

Lemma: If in each round we add a random 1/K-fraction of the remaining elements of S to T_r , then for all $r \in [R]$, $I(X; S_r) \leq 6K$. **Proof:**

▶
$$I(X; S_r) = H(S_r) - H(S_r|X)$$

▶ $|S_r| = n_r$ and $|S| = m$, so $H(S_r) \le \log {m \choose n_r}$
▶ We show that for any $T \in {S \choose n_r}$ and x ,
 $\mathbb{P}(S_r = T|X = x) \le n = \frac{2^{6K}}{2}$

 $\implies H(S_r|X) \ge \log \frac{1}{p} \ge \log {\binom{m}{n_r}} - 6K$

Recall $K = \lfloor \frac{1}{16} \log \frac{1}{\delta} \rfloor$. Note $n_r = 2^{-r/K} m \approx (1 - 1/K)^r m$. X is randomness used by **UR**^{\subset ,+} protocol.

Lemma: If in each round we add a random 1/K-fraction of the remaining elements of S to T_r , then for all $r \in [R]$, $I(X; S_r) \leq 6K$. **Proof:**

Correctness of protocol then follows by adaptivity lemma.

Recall $K = \lfloor \frac{1}{16} \log \frac{1}{\delta} \rfloor$. Note $n_r = 2^{-r/K} m \approx (1 - 1/K)^r m$. X is randomness used by $\mathbf{UR}^{\subset,+}$ protocol.

Lemma: If in each round we add a random 1/K-fraction of the remaining elements of S to T_r , then for all $r \in [R]$, $I(X; S_r) \leq 6K$. **Proof:**

Correctness of protocol then follows by adaptivity lemma.

Note a "1/K-fraction of what's left" requires at least K items left. Thus we stop when $2^{-R/K}m < K$, i.e. $R = \Theta(K \log(m/K))$.

The End