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O Minerbe (2011): assuming quadratic curvature decay and uniformly
non-maximal volume growth the next possibility is Vol(B,) = O(r"™*)

m Asymptotically locally conical (ALC) manifolds: outside a compact set
we have a circle fibration M\ K — C(X) and the metric g is asymptotic
to a Riemmanian submersion

g~ gc+ 6

0 ALF gravitational instantons

0 Higher dimensional ALC examples with holonomy G, and Spin,
2001: Brandhuber—-Gomis—Gubser—Gukov, Cveti¢—Gibbons—Li—Pope
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G,—manifolds

M7 orientable 7-manifold
® 3 positive 3-form ¢:
%(UJ(,O) A (vap) Ao = g,(u,v)volg,
® Hol(g,) € Gy <= dy = 0 = dx,p (torsion-free Go—structure)
® Furthermore Hol(g,) = G, <= (M, g,,) carries no parallel 1-forms

Dimensional reduction:
®m 7 =3+ 4: G, and hyperkahler geometry
MT =R3x HKA'7 w =dxg ANdxp Adxs —dx; Awi — dxp Awy — dxz Aws

m 7 =14 6: G, and Calabi—Yau geometry

M =R x CY?, p=dxANw+ReQ



Main result

Theorem (F.—Haskins—Nordstrém, 2017)

Let (B, go, wo, o) be an asymptotically conical Calabi—Yau 3-fold
asymptotic to a Calabi-Yau cone (C, gc) and let M — B be a principal
circle bundle.

Assume that ¢;(M) # 0 but ¢;(M) U [we] = 0.

Then for every € > 0 sufficiently small there exists an S'—invariant
G,—holonomy metric g. on M with the following properties.

® (M,g.) is an ALC manifold: as r — oo, g. = gc + €262, + O(r™").

m (M, g.) collapses to (B, gp) with bounded curvature as ¢ — 0:
ge ~cka 8o + €202 as € = 0.
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Bogoyavlenskaya (2013).
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O three asymptotically conical examples due to Bryant—Salamon (1989);
O an explicit example due to Brandhuber—Gomis—Gubser—Gukov (2001) moving
in a 1-parameter family whose existence was rigorously established by
Bogoyavlenskaya (2013).

We produce infinitely many new examples.

®m Non-compact complete examples of manifolds with special holonomy that
collapse with globally bounded curvature are a new higher-dimensional
phenomenon: the only hyperkahler 4-manifold with a tri-holomorphic
circle action without fixed points is R3 x ST.

m Connections to physics: Type IIA String theory compactified on AC CY
3-fold (B, wo, Qo) with Ramond—Ramond 2-form flux d satisfying
[d0] U [wo] = 0 and no D6 branes nor O6~ planes as the weak-coupling
limit of M theory compactified on an ALC Gy—manifold.



The Gibbons—Hawking Ansatz

Recall the Gibbons—Hawking Ansatz (1978): local form of hyperkihler
metrics in dimension 4 with a triholomorphic circle action
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® M — U a principal U(1)-bundle with a connection 6

g = hggs + h~162 is a hyperkihler metric on M
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Recall the Gibbons—Hawking Ansatz (1978): local form of hyperkihler
metrics in dimension 4 with a triholomorphic circle action

® U open subset of R3
® h positive function on U
® M — U a principal U(1)-bundle with a connection 6

g = hggs + h~162 is a hyperkihler metric on M

v

(h, 0) satisfies the monopole equation xdh = df

Goal: a higher-dimensional analogue for Go,—manifolds

Cvetit-Gibbons-Lii—Pope (2002), Kaste-Minasian—Petrini-Tomasiello (2003),
Apostolov—Salamon (2004)
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m M" — BS a principal circle bundle with connection 6
= h:B— R
® (w,Q) an SU(3)-structure on B

gpz@/\w—&—h%ReQ, *cpcp:—ﬁ/\h%ImQ—k%hw{
8y = \/ng,Q +h710?

Torsion-free Go—structure on M if and only if

L (%h%ﬂ) satisfies the Calabi—Yau monopole equations
ldhAw? = hidg ATmQ,  dAw? =0
m the SU(3)-structure (w, Q) has constrained torsion

dw=0, d (h%ReQ) tdIAw=0, d (h%1m9> —0
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Introduce a small parameter ¢ > 0:
p=cOAw+hiReQ,  g,=Vhgoq+eh 16
The e—dependent Apostolov—Salamon equations:
ldhAw? = chidd ATmQ,  dOAw? =0,
do=0, d (h%ReQ) fedIrw=0, d (h%ImQ) —0.

® Formal limit as ¢ — 0: hp =1 and (wo, ) is a CY structure on B.

® Linearisation over the collapsed limit:
0 Calabi-Yau monopole

ldhAws =dO AImQo,  dOAwWs =0
O infinitesimal deformation of the SU(3)-structure

div=0,  dReQ+3dhAReQ+dfAwo =0,  dImQ+IdhAImQo =0
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Abelian Hermitian Yang—Mills connections

m Start with an AC Calabi—Yau 3-fold (B, wo, Q)

m We look for Calabi—Yau monopole on B:

TdhAwi=doAImQy,  dfAws=0

® There is a basic dichotomy:
O h=0 and 0 is a Hermitian Yang—Mills (HYM) connection
O (h,0) has singularities (e.g. Dirac-type singularities along a special
Lagrangian submanifold L C B)
In this talk we only consider the former case

® Proposition Let M — B be a principal circle bundle over an irreducible
AC Calabi-Yau 3-fold (B, wg, ). Then M carries a HYM connection 6.

0 By Hodge theory on AC manifolds we can represent every cohomology class
in H?(B) with a unique closed and coclosed form of rate O(r~?2)

O There are no decaying harmonic functions and 1-forms on B = the closed
and coclosed representative of ¢;(M) is a primitive (1,1)—form
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® We look for an infinitesimal deformation (w, Q) of the
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Solution of the AS equations at first order in ¢

®m M — B principal U(1)-bundle with HYM connection 6

® We look for an infinitesimal deformation (w, Q) of the
SU(3)-structure such that
dw =0, dReQ + df A wo = 0, dlmQ =0
Here ReQ = (Re Q)" + (Re Q)™ and ImQ = %(Re Q)T — x(Re Q)™
m Solve instead the elliptic equation

dp=0, d*p=db

and then set & = 0 and Q = —(xp + ip)

0 0 HYM <= xdf = —df N wo
O B does not carry decaying harmonic functions and 1-forms = every
solution p satisfies p™ =0

m Necessary and sufficient condition
df 1> P*H?(B) ~ H2(B) <= c1(M) U [wo] = 0 € H*(B) ~ H(B)*
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Solving the AS equations for small ¢

(B, wop, Qo) AC Calabi—-Yau manifold
principal U(1)-bundle M — B with ¢;(M) # 0 & ¢;(M) U [wo] =0

® HYM connection 6 on M with coexact curvature: df = d*p, dp =0

m Solution .
h=0, 0, w=0, Q=—(xp+1ip)
of the linearised AS equations
~ closed ALC S'~invariant Go—structure on M with torsion O(¢)

gpgl) =eONwy+ReQy—cxp

m Construct formal solution of the non-linear AS equations as a formal
power series in ¢

® Prove the series has a positive radius of convergence (in weighted
Holder spaces)



The torsion of SU(3)—structures on 6-manifolds

® If (w,Q) is an SU(3)-structure then there exist w, W, € Q°,
wy, ws € QL, wa, W € Qf and ws € Q3, such that
dw=3w; ReQ+3W ImQ + w3z + ws A w,
dRe Q = =21 w? + ws A Re Q + ws,
dim Q = 2wy w? + ws AImQ + Wy



The torsion of SU(3)—structures on 6-manifolds

® If (w,Q) is an SU(3)-structure then there exist w, W, € Q°,
wy, ws € QL, wa, W € Qf and ws € Q3, such that

dw=3w; ReQ+3W ImQ + w3z + ws A w,
dRe Q = =21 w? + ws A Re Q + ws,
dim Q = 2wy w? + ws AImQ + Wy

® Introduce free parameters f, g € Q° and X € Q! ~» extended AS eqs
ldh Aw? = hidg ANTmQ,  df Aw? =0,
dw=0, d (h%ReQ) L dOAw = dxd(fw),

d (h%ImQ> = dxd (gw + X_Re Q)



The torsion of SU(3)—structures on 6-manifolds

® If (w,Q) is an SU(3)-structure then there exist w, W, € Q°,
wy, ws € QL, wa, W € Qf and ws € Q3, such that

dw=3w; ReQ+3W ImQ + w3z + ws A w,
dRe Q = =21 w? + ws A Re Q + ws,
dim Q = 2wy w? + ws AImQ + Wy

® Introduce free parameters f, g € Q° and X € Q! ~» extended AS eqs
ldh Aw? = hidg ANTmQ,  df Aw? =0,
dw=0, d (h%ReQ) L dOAw = dxd(fw),
d (h%ImQ> = dwd (gw + XRe Q)

O Need to use that there are no decaying elements in the kernel of

m (dd(fw)) +— AF Tiee (d"d(gw + X_Re Q)) «— Ag,dd" X+3d"dX
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The linearised AS equations

® The extended linearised operator

£:30°320'0Q® 2000 9208 .,
ldhAwg —dyAImQo,  dyAwf,  d'y
d(p+2hReQo+ v Awp) + dxd(f w)

d(p+ 2hImQp) + d+d (gw + X_Re Q)

where p=#pT —xp~ if p=pt +p~.

m The first three equations can be interpreted as the Dirac operator: an
isomorphism for a certain range of decay rates

m Use the Dirac operator to derive “normal forms” for exact 4-forms
and thereby relate the remaining two equations to (d + d*)p

® The extended linearised operator L is surjective and has a bounded
right inverse in appropriate weighted Holder spaces

= Existence and convergence of power series solutions to the AS egs
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Examples from small resolutions of CY cones

Consider the isolated hypersurface singularity X, C C* defined by

xy + 2Pt —wPtl =0

m Collins—Székelyhidi (2015): X, carries a Calabi-Yau cone metric
(this uses K-stability)

® Brieskorn (1968): X, has a small resolution B — X,,.

bs(B) =0

by(B) = p (chain of p rational curves exceptional set of resolution)
m Goto (2012): B carries AC Calabi—Yau structures

m circle bundle M — B has by(M) = p—1 and b3(M) = p

~> infinitely many new simply connected complete G,—manifolds
and families of complete non-compact G,—metrics of arbitrarily high
dimension



