Counterexample to a variant of the Hanani-Tutte theorem on the surface of genus 4

Radoslav Fulek and Jan Kynčl

Charles University, Prague

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

In a drawing the following situations are forbidden:

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

In a drawing the following situations are forbidden:

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

In a drawing the following situations are forbidden:

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

In a drawing the following situations are forbidden:

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

In a drawing the following situations are forbidden:

embedding = drawing with no crossings

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)

A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Weak Hanani-Tutte theorem: (Cairns-Nikolayevsky, 2000;
Pach-Tóth, 2000; Pelsmajer-Schaefer-Štefankovič, 2007) If a graph G has an even drawing D in the plane (every pair of edges crosses an even number of times), then G is planar. Moreover, G has a plane embedding with the same rotation system as D.

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Weak Hanani-Tutte theorem: (Cairns-Nikolayevsky, 2000;
Pach-Tóth, 2000; Pelsmajer-Schaefer-Štefankovič, 2007) If a graph G has an even drawing D in the plane (every pair of edges crosses an even number of times), then G is planar. Moreover, G has a plane embedding with the same rotation system as D.

- recommended reading:
- M. Schaefer, Hanani-Tutte and related results (2011)

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Weak Hanani-Tutte theorem: (Cairns-Nikolayevsky, 2000;
Pach-Tóth, 2000; Pelsmajer-Schaefer-Štefankovič, 2007) If a graph G has an even drawing D in the plane (every pair of edges crosses an even number of times), then G is planar. Moreover, G has a plane embedding with the same rotation system as D.

- recommended reading:
- M. Schaefer, Hanani-Tutte and related results (2011)
- Fulek et al., Hanani-Tutte, Monotone Drawings, and Level-Planarity (2012)

Hanani-Tutte theorems

(Strong) Hanani-Tutte theorem: (Hanani, 1934; Tutte, 1970)
A graph is planar if and only if it has an independently even drawing in the plane; that is, every pair of non-adjacent edges crosses an even number of times.

Weak Hanani-Tutte theorem: (Cairns-Nikolayevsky, 2000;
Pach-Tóth, 2000; Pelsmajer-Schaefer-Štefankovič, 2007)
If a graph G has an even drawing D in the plane (every pair of edges crosses an even number of times), then G is planar. Moreover, G has a plane embedding with the same rotation system as D.

- recommended reading:
- M. Schaefer, Hanani-Tutte and related results (2011)
- Fulek et al., Hanani-Tutte, Monotone Drawings, and Level-Planarity (2012)
- M. Schaefer, Toward a theory of planarity: Hanani-Tutte and planarity variants (2013)

Hanani-Tutte theorems

Unified Hanani-Tutte theorem:

(Pelsmajer-Schaefer-Štefankovič, 2006; Fulek-K.-Pálvölgyi, 2016)
Let G be a graph and let W be a subset of vertices of G. Let \mathcal{D} be an independently even drawing of G in the plane where, in addition, every pair of edges with a common endpoint in W crosses an even number of times.
Then G has a plane drawing where the rotations of vertices from W are the same as in \mathcal{D}.

Hanani-Tutte theorems

Unified Hanani-Tutte theorem:

(Pelsmajer-Schaefer-Štefankovič, 2006; Fulek-K.-Pálvölgyi, 2016)
Let G be a graph and let W be a subset of vertices of G. Let \mathcal{D} be an independently even drawing of G in the plane where, in addition, every pair of edges with a common endpoint in W crosses an even number of times.
Then G has a plane drawing where the rotations of vertices from W are the same as in \mathcal{D}.

- $W=\emptyset$: strong
- $W=V(G):$ weak

Hanani-Tutte theorems on surfaces

Weak Hanani-Tutte theorem on surfaces:
(Cairns-Nikolayevsky, 2000; Pelsmajer-Schaefer-Štefankovič, 2009)
If a graph G has an even drawing \mathcal{D} on a surface S, then G has an embedding on S that preserves the embedding scheme of \mathcal{D}.

Hanani-Tutte theorems on surfaces

Weak Hanani-Tutte theorem on surfaces:
(Cairns-Nikolayevsky, 2000; Pelsmajer-Schaefer-Štefankovič, 2009)
If a graph G has an even drawing \mathcal{D} on a surface S, then G has an embedding on S that preserves the embedding scheme of \mathcal{D}.
(Strong) Hanani-Tutte theorem on the projective plane: (Pelsmajer-Schaefer-Stasi, 2009; Colin de Verdière-Kaluža-Paták-Patáková-Tancer, 2016)
If a graph G has an independently even drawing on the projective plane, then G has an embedding on the projective plane.

Hanani-Tutte theorems on surfaces

Weak Hanani-Tutte theorem on surfaces:

(Cairns-Nikolayevsky, 2000; Pelsmajer-Schaefer-Štefankovič, 2009) If a graph G has an even drawing \mathcal{D} on a surface S, then G has an embedding on S that preserves the embedding scheme of \mathcal{D}.
(Strong) Hanani-Tutte theorem on the projective plane: (Pelsmajer-Schaefer-Stasi, 2009; Colin de Verdière-Kaluža-Paták-Patáková-Tancer, 2016) If a graph G has an independently even drawing on the projective plane, then G has an embedding on the projective plane.

Problem: Can the strong Hanani-Tutte theorem be extended to other surfaces?

Main result

- The strong Hanani-Tutte theorem does not generalize to the orientable surface of genus 4:

Main result

- The strong Hanani-Tutte theorem does not generalize to the orientable surface of genus 4:

Theorem 1: There is a graph of genus 5 that has an independently even drawing on the orientable surface of genus 4 .

Main result

- The strong Hanani-Tutte theorem does not generalize to the orientable surface of genus 4:

Theorem 1: There is a graph of genus 5 that has an independently even drawing on the orientable surface of genus 4 .
(disproves a conjecture of Schaefer and Štefankovič, 2013)

Main result

- The strong Hanani-Tutte theorem does not generalize to the orientable surface of genus 4:

Theorem 1: There is a graph of genus 5 that has an independently even drawing on the orientable surface of genus 4 .
(disproves a conjecture of Schaefer and Štefankovič, 2013)

- Unified Hanani-Tutte theorem does not generalize to the torus:

Main result

- The strong Hanani-Tutte theorem does not generalize to the orientable surface of genus 4:

Theorem 1: There is a graph of genus 5 that has an independently even drawing on the orientable surface of genus 4 .
(disproves a conjecture of Schaefer and Štefankovič, 2013)

- Unified Hanani-Tutte theorem does not generalize to the torus:

Theorem 2: There is a graph G with the following two properties.

1) The graph G has an independently even drawing \mathcal{D} on the torus, with a set W of four vertices such that every pair of edges with a common endpoint in W crosses an even number of times.
2) There is no embedding of G on the torus with the same rotations of the vertices of W as in \mathcal{D}.

Proof of Theorem 2

1)

- $G=K_{3,4}$
- $W=$ the part with 4 vertices (empty circles)
- each vertex of W has rotation $(1,2,3)$

Proof of Theorem 2

2) Let \mathcal{E} be an embedding of G on an orientable surface S of minimum genus such that the rotation of every vertex from W is $(1,2,3)$.

Proof of Theorem 2

2) Let \mathcal{E} be an embedding of G on an orientable surface S of minimum genus such that the rotation of every vertex from W is $(1,2,3)$.
forbidden:

Proof of Theorem 2

2) Let \mathcal{E} be an embedding of G on an orientable surface S of minimum genus such that the rotation of every vertex from W is $(1,2,3)$.

forbidden:

\Rightarrow every facial walk has length at least 6 , so $2 e \geq 6 f$

Proof of Theorem 2

2) Let \mathcal{E} be an embedding of G on an orientable surface S of minimum genus such that the rotation of every vertex from W is $(1,2,3)$.

forbidden:

\Rightarrow every facial walk has length at least 6 , so $2 e \geq 6 f$
\Rightarrow the Euler characteristic of S satisfies

$$
\chi(S)=v-e+f \leq \frac{1}{3}(3 v-2 e)=\frac{1}{3}(21-24)=-1
$$

Proof of Theorem 2

2) Let \mathcal{E} be an embedding of G on an orientable surface S of minimum genus such that the rotation of every vertex from W is $(1,2,3)$.

forbidden:

\Rightarrow every facial walk has length at least 6 , so $2 e \geq 6 f$
\Rightarrow the Euler characteristic of S satisfies

$$
\chi(S)=v-e+f \leq \frac{1}{3}(3 v-2 e)=\frac{1}{3}(21-24)=-1
$$

\Rightarrow the genus of S is at least $\lceil(2+1) / 2\rceil=2$.

Proof of Theorem 1

independently even drawing of a graph K on the orientable surface of genus 4:

- drill holes around the vertices of W in the drawing from Theorem 2, split the vertices of W
- glue the resulting drawing (left) with a sufficiently large grid (right) idea: the grid will fix the cyclic orders on the boundaries of the holes

Proof of Theorem 1

lower bound on the genus of K :
Lemma: (Geelen-Richter-Salazar, 2004;
Thomassen, 1997; Mohar, 1992; Robertson-Seymour, 1990)
In every embedding of a large grid on a surface of fixed genus, a large portion of the grid is embedded in a planar way.

