

χ -boundedness of graph classes excluding wheel vertex-minors

Sang-il Oum (KAIST)

Joint work w/ Hojin Choi, O-joung Kwon (T.U. Berlin), and Paul Wollan (Univ. Rome)

Geometric and Structural Graphs Banff, August 21, 2017

http://mathsci.kaist.ac.kr/~sangil

χ-bounded classes of graphs • A class C of graphs is χ -bounded if \exists function f such that $\forall G \in C, \chi(G) \leq f(\omega(G))$.

- Examples:
 - Perfect graphs
 - complements
 - interval graphs
 - unit disk graphs $\chi \leq 3\omega$ -2 (Peeters, 1991)
 - graphs of bounded rank-width (Dvořák and Kráľ 2012)

bipartite graphs or line graphs of bipartite graphs, or their

Local complementation and vertex-minors

(local complementation at x)

H is locally equivalent to G if $H=G^*x_1^*x_2^*x_3...$

vertex-minor=graph obtained by applying a sequence of local complemention and vertex deletions

Geelen's conjecture

- True if:
 - H=W₅ (Dvořák and Kráľ 2012)
 - H=Fan graph (Choi, Kwon, and O. 2017)
- then H-vertex-minor-free graphs are χ -bounded.
 - H=long cycle (Gyárfás conj. 1985, solved by Chudnovsky, Scott, Seymour 2016)
 - H=tree (Scott 1997)
 - H="banana tree" (Scott, Seymour 2017)

• Geelen (2009): Are H-vertex-minor-free graphs χ -bounded for fixed H?

• If graphs with no H-subdivision (as an induced subgraph) are χ -bounded,

• If H=wheel graph, then Geelen's conjecture is true.

THM (Choi, Kwon, O., Wollan)

For $n \geq 3$, the class of graphs with no W_n vertex-minor is χ -bounded

- Corollary
 - Circle graphs are χ -bounded
 - Common generalization of known cases

 - H=Fan graph (Choi, Kwon, and O. 2017)

Our Theorem

• H=W₅ (Dvořák and Kráľ 2012) --- depending on χ -boundedness of circle graphs

Circle graphs are χ -bounded

Gyárfás (1985): circle graphs are χ -bounded

수리과학과 KAIST

Intersection graphs of chords in a circle 3

2 4

C

3

3

4

Kuratowski-Wagner

"G is planar" ⇔

"G has no minor isomorphic to K_5 or $K_{3,3}$ "

Can we characterize circle graphs in terms of forbidden structures?

They are not circle graphs

Circle graphs via vertex-minors Bouchet (1994)

A graph is a circle graph it has no vertex-minor isomorphic to

THM (Choi, Kwon, O., Wollan) The class of graphs with no W_n vertex-minor is χ -bounded

Corollary: Circle graphs are χ -bounded

Proof sketch

Initial proof setup (leveling)

- |L₀|=1
- $|L_i|$ =vertices having ≥ 1 neighbor in L_{i-1} and no neighbor in L_0, L_1, \dots, L_{i-2} .
- If G has large χ , then some L_m has large χ .
- Choose min m
- Find a long induced cycle in L_m by Chudnovsky, Scott, Seymour
- Choose each L_0, L_1, \dots, L_{m-1} minimal while keeping this long cycle
- Pray to get a wheel?
 - FAIL

If a vertex in L_{m-1} has large # neighbors in the cycle of L_m , then we win

Single leveling --- Lucky case

A long cycle with many attachments from the top

Difficult to remove chords

Fix: Find "controllers"

- Goal: Find two disjoint large independent sets having "regular" neighbors on the cycle
 - So that one set would become "controllers"
- How to obtain such a structure?

Repeated leveling

- Inside L_m, find another leveling
- Repeat this many times
 - Many layers of leveling
- Apply Ramsey!
- Find one vertex from each layer to create "controllers"

Producing a wheel vertex-minor

- Prop: For all n and q, there exist k, M such that if G with no clique of size q has an induced cycle C of length ≥M and disjoint vertex sets V₁, V₂, ..., V_k, T₁, T₂, ..., T_k disjoint with the cycle such that
 - (1) each vertex in C has a neighbor in each V_i,
 - (2) each vertex in V_j has at most n-1 neighbors in C
 - (3) no edges from T_i to C
 - (4) each vertex in V_j has a neighbor in T_j ,
 - (5) T_i has a "root" vertex that for each vertex in
 - $N(V_j) \cap T_j$, there is a path P in $G[T_j]$ having only one vertex in $N(V_j)$,
 - then it contains W_n as a vertex-minor.

For a sequence (A_1, \ldots, A_ℓ) of finite subsets of an interval $I \subseteq \mathbb{R}$, a partition $\{I_1, \ldots, I_k\}$ of I into intervals is called a *regular partition* of I with respect to (A_1, \ldots, A_ℓ) if for all $i \in \{1, \ldots, k\}$, either , or

•
$$A_1 \cap I_i = A_2 \cap I_i = \dots = A_\ell \cap I_i \neq \emptyset$$

• $|A_1 \cap I_i| = |A_2 \cap I_i| = \cdots = |A_\ell \cap I_i| > 0$, and for all $j, j' \in \{1, \ldots, \ell\}$ with j < j', $\max(A_i \cap I_i) < \min(A_{i'} \cap I_i), \text{ or }$

 $\max(A_{i'} \cap I_i) < \min(A_i \cap I_i).$

The number of parts k is called the *order* of the regular partition.

Regular partition lemma: For all m, there exists N such that every sequence (A₁,..., A_N) of k-element sets of reals has a subsequence (A₁', A₂',..., A_m') and a regular partition of \mathbb{R} w.r.t. (A₁',...,A_m') of order $\leq k$.

• $|A_1 \cap I_i| = |A_2 \cap I_i| = \cdots = |A_\ell \cap I_i| > 0$, and for all $j, j' \in \{1, \ldots, \ell\}$ with j < j',

- Q1: Geelen's conjecture. Is it true for double wheels?
- Q2: Structure for H-vertex-minor free graphs?
- Q3: Deciding whether H is a vertexminor in poly time?

Further questions

Thank you for your attention!