χ-boundedness of graph classes excluding wheel vertex-minors

Sang-il Oum (KAIST)
Joint work w/ Hojin Choi, O-joung Kwon (T.U. Berlin), and Paul Wollan (Univ. Rome)

Geometric and Structural Graphs
Banff, August 21, 2017

χ-bounded classes of graphs

- A class C of graphs is χ-bounded if
\exists function f such that $\forall \mathrm{G} \in \mathrm{C}, \chi(\mathrm{G}) \leq \mathrm{f}(\omega(\mathrm{G}))$.
- Examples:
- Perfect graphs
- bipartite graphs or line graphs of bipartite graphs, or their complements
- interval graphs
- unit disk graphs $\chi \leq 3 \omega-2$ (Peeters, 1991)
- graphs of bounded rank-width (Dvořák and Král 2012)

Local complementation and vertex-minors

(local complementation at x)
H is locally equivalent to G if $H=G^{*} x_{1}{ }^{*} x_{2}{ }^{*} x_{3} \ldots$
vertex-minor=graph obtained by applying a sequence of local complemention and vertex deletions

Geelen's conjecture

- Geelen (2009): Are H-vertex-minor-free graphs χ-bounded for fixed H ?
- True if:
- $\mathrm{H}=\mathrm{W}_{5}$ (Dvořák and Král 2012)
- H=Fan graph (Choi, Kwon, and O. 2017)
- If graphs with no H -subdivision (as an induced subgraph) are χ-bounded, then H -vertex-minor-free graphs are χ-bounded.
- H=long cycle (Gyárfás conj. 1985, solved by Chudnovsky, Scott, Seymour 2016)
- H=tree (Scott 1997)
- H="banana tree" (Scott, Seymour 2017)

Our Theorem

- If $\mathrm{H}=$ wheel graph, then Geelen's conjecture is true.

THM (Choi, Kwon, O., Wollan)

For $n \geq 3$, the class of graphs with no W_{n} vertex-minor is χ-bounded

- Corollary
- Circle graphs are χ-bounded
- Common generalization of known cases
- $\mathrm{H}=\mathrm{W}_{5}$ (Dvořák and Král' 2012) --- depending on χ-boundedness of circle graphs
- H=Fan graph (Choi, Kwon, and O. 2017)

Circle graphs are χ-bounded

Intersection graphs of chords in a circle

Gyárfás (1985): circle graphs are χ-bounded

Local complementation

"Local complementation" preserves the property of being circle graphs

Kuratowski-Wagner

. "G is planar" \Leftrightarrow
" G has no minor isomorphic to K_{5} or $\mathrm{K}_{3,3}$ "

Can we characterize circle graphs in terms of forbidden structures?

Non-circle graphs

\otimes

They are not circle graphs

Circle graphs via vertex-minors

THM (Choi, Kwon, O., Wollan)
The class of graphs with no W_{n} vertex-minor is χ-bounded

Corollary: Circle graphs are χ-bounded

Proof sketch

Initial proof setup (leveling)

- $\left|L_{0}\right|=1$
- $\left|\mathrm{L}_{\mathrm{i}}\right|=$ =vertices having ≥ 1 neighbor in $\mathrm{L}_{\mathrm{i}-1}$ and no neighbor in $\mathrm{L}_{0}, \mathrm{~L}_{1}, \ldots, \mathrm{~L}_{\mathrm{i}-2}$.
- If G has large χ, then some L_{m} has large χ.
- Choose min m
- Find a long induced cycle in L_{m} by Chudnovsky, Scott, Seymour
- Choose each $\mathrm{L}_{0}, \mathrm{~L}_{1}, \ldots, \mathrm{~L}_{\mathrm{m}-1}$ minimal while keeping this long cycle
- Pray to get a wheel?
- FAIL

Single leveling --- Lucky case

$$
L_{m-1}
$$

Lm

If a vertex in L_{m-1} has large \# neighbors in the cycle of L_{m}, then we win

Fix: Find "controllers"

- Goal: Find two disjoint large independent sets having "regular" neighbors on the cycle
- So that one set would become "controllers"

$$
\mathrm{G}_{1}{ }^{\star} \mathrm{W}_{1}{ }^{\star} \mathrm{W}_{3}{ }^{*} \mathrm{~W}_{4}{ }^{\star} \mathrm{W}_{6}{ }^{\star} \mathrm{z}_{2}{ }^{\star} \mathrm{z}_{5} \quad \mathrm{G}_{3}{ }^{\star} \mathrm{p}_{2}{ }^{\star} \mathrm{q}_{2}{ }^{\star} \mathrm{p}_{2}{ }^{\star} \mathrm{p}_{5}{ }^{\star} \mathrm{q}_{5}{ }^{*} \mathrm{p}_{5}
$$

- How to obtain such a structure?
"Controllers" allow us to remove chords

Repeated leveling

- Inside L_{m}, find another leveling
- Repeat this many times
- Many layers of leveling
- Apply Ramsey!
- Find one vertex from each layer to create "controllers"

Producing a wheel vertex-minor

- Prop: For all n and q, there exist k, M such that if G with no clique of size q
has an induced cycle C of length $\geq \mathrm{M}$ and disjoint vertex sets $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}, \mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{k}}$ disjoint with the cycle such that
(1) each vertex in C has a neighbor in each V_{j},
(2) each vertex in V_{j} has at most $n-1$ neighbors in C (3) no edges from T_{j} to C
(4) each vertex in V_{j} has a neighbor in T_{j},
(5) T_{j} has a "root" vertex that for each vertex in $N\left(V_{j}\right) \cap T_{j}$, there is a path P in $G\left[T_{j}\right]$ having only one vertex in $\mathrm{N}\left(\mathrm{V}_{\mathrm{j}}\right)$,
then it contains W_{n} as a vertex-minor.

For a sequence $\left(A_{1}, \ldots, A_{\ell}\right)$ of finite subsets of an interval $I \subseteq \mathbb{R}$, a partition $\left\{I_{1}, \ldots, I_{k}\right\}$ of I into intervals is called a regular partition of I with respect to $\left(A_{1}, \ldots, A_{\ell}\right)$ if for all $i \in\{1, \ldots, k\}$, either

- $A_{1} \cap I_{i}=A_{2} \cap I_{i}=\cdots=A_{\ell} \cap I_{i} \neq \varnothing$, or
- $\left|A_{1} \cap I_{i}\right|=\left|A_{2} \cap I_{i}\right|=\cdots=\left|A_{\ell} \cap I_{i}\right|>0$, and for all $j, j^{\prime} \in\{1, \ldots, \ell\}$ with $j<j^{\prime}$, $\max \left(A_{j} \cap I_{i}\right)<\min \left(A_{j^{\prime}} \cap I_{i}\right)$, or
- $\left|A_{1} \cap I_{i}\right|=\left|A_{2} \cap I_{i}\right|=\cdots=\left|A_{\ell} \cap I_{i}\right|>0$, and for all $j, j^{\prime} \in\{1, \ldots, \ell\}$ with $j<j^{\prime}$, $\max \left(A_{j^{\prime}} \cap I_{i}\right)<\min \left(A_{j} \cap I_{i}\right)$.

The number of parts k is called the order of the regular partition.

Regular partition lemma:
 For all m, there exists N such that every sequence (A_{1}, \ldots, A_{N}) of k-element sets of reals
 has a subsequence ($A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{m}{ }^{\prime}$) and a regular partition of \mathbb{R} w.r.t. ($\left.A_{1}, \ldots, A_{m}{ }^{\prime}\right)$ of order $\leq \mathrm{k}$.

Further questions

- Q1: Geelen's conjecture. Is it true for double wheels?
- Q2: Structure for H-vertex-minor

Thank you
for your attention! free graphs?

- Q3: Deciding whether H is a vertexminor in poly time?

