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Figure 2. Local complementation and pivot.

theorems of this type on vertex-minors with respect to less restrictive
connectivity requirements.

2. Preliminaries

For X Ñ V pGq, let �GpXq be the set of edges having one end in X
and another end in V pGqzX. Let NGpxq be the set of the neighbors of
a vertex x in G. For X Ñ V pGq, let GrXs be the induced subgraph
of G on the vertex set X. For two disjoint subsets S, T of V pGq,
let GrS, T s “ GrS Y T szpEpGrSsq Y EpGrT sqq. Clearly, GrS, T s is a
bipartite graph with the bipartition pS, T q.

2.1. Vertex-minors. The local complementation of a graph G at a
vertex v is an operation to replace the subgraph of G induced by the
neighbors of v by its complement graph. In other words, to apply local
complementation at v for every pair x, y of neighbors of v, we delete the
edge xy if x and y are adjacent, and add it otherwise. We write G˚v to
denote the graph obtained from G by applying local complementation
of G at v. Two graphs are locally equivalent if one is obtained from
another by applying a sequence of local complementation. A graph H
is a vertex-minor of G if H is an induced subgraph of a graph locally
equivalent to G.
For an edge xy of a graph G, a graph obtained by pivoting an edge

xy of G is defined as G^ xy “ G ˚ x ˚ y ˚ x. Here is a direct way to see
G ^ xy; there are 3 kinds of neighbors of x or y; some are adjacent to
both, some are adjacent to only x, others are adjacent to only y. We
flip the adjacency between all pairs of neighbors of x or y of distinct
kinds and then swap two vertices x and y, where flipping means that
we delete the edge if it exists and add it otherwise. Two graphs are
pivot-equivalent if one is obtained from another by a sequence of pivots.
Thus, pivot-equivalent graphs are locally equivalent. See Figure 2 for
an example of these operations.

(local complementation at x)

vertex-minor=graph obtained by applying a sequence of 
local complemention and vertex deletions

H is locally equivalent to G if H=G*x1*x2*x3... 
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For n≥3,  
the class of graphs with no Wn vertex-minor is 𝜒-bounded
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“Local complementation” preserves  
the property of being circle graphs
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Can we characterize circle graphs
in terms of forbidden structures?



CIRCLE GRAPH OBSTRUCTIONS UNDER PIVOTING

JIM GEELEN AND SANG-IL OUM

Abstract. A circle graph is the intersection graph of a set of
chords of a circle. The class of circle graphs is closed under pivot-
minors. We determine the pivot-minor-minimal non-circle-graphs;
there are 15 obstructions. These obstructions are found, by com-
puter search, as a corollary to Bouchet’s characterization of circle
graphs under local complementation. Our characterization gener-
alizes Kuratowski’s Theorem.

1. Introduction

The class of circle graphs is closed with respect to vertex-minors and
hence also pivot-minors. (Definitions are postponed until Section 2.)
Bouchet [5] gave the following characterization of circle graphs; the
graphs W5, W7, and BW3 are defined in Figure 1. All graphs in this
paper are simple; graphs have no loops and no parallel edges.

Theorem 1.1 (Bouchet). A graph is a circle graph if and only it has
no vertex-minor that is isomorphic to W5, W7, or BW3.

Figure 1. W5, W7, and BW3: Excluded vertex-minors
for circle graphs.

As a corollary to Bouchet’s theorem we prove the following result.
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Figure 2: A problematic case.

Then G{tp2, p3, . . . , pm´1u is isomorphic to a vertex-minor of G.

Proof. Let G1 :“ G{tp2, p3, . . . , pm´1u and let p be the contracted vertex in G1. We depict in
Figure 1. We simulate this contraction as follows:

1. First if there is a vertex of degree 2 in tp3, . . . , pm´1u, then we smooth it. We may assume
that there are no vertices of degree 2 in p3, . . . , pm´1.

2. If m • 7, then we apply local complementation at p4 and remove it. This local complementa-
tion removes edges qp3 and qp5, and links p3 and p5. Then we smooth p3 and p5. By applying
this procedure repeatedly, we may assume m P t4, 5, 6u.

3. If m “ 4, then we smooth p2. If m “ 5, then we apply local complementation at p3 and
remove it, and then smooth p4. If m “ 6, then we pivot p3p4 and remove p3 and p4, and then
smooth p5.

It is not di�cult to see that each resulting graph is isomorphic to G1.

3 Overview of the approach

We begin by taking a leveling of the given graph. A sequence L0, L1, . . . , Lm

of disjoint subsets of
the vertex set of a graph G is called a leveling in G if

1. |L0| “ 1, and

2. for each i P t1, . . . ,mu, every vertex in L
i

has a neighbor in L
i´1, and has no neighbors in L

j

for all j P t0, . . . , i ´ 2u.
Each L

i

is called a level. We can obtain a leveling that covers all vertices in a connected graph
by fixing a vertex v, and taking L

i

as the set of all vertices at distance i from v. Given a leveling
L0, L1, . . . , Lm

, if each L
i

can be colored by x colors, then the whole graph can be colored by 2x
colors, because there are no edges between L

i

and L
j

for |j ´ i| • 2. Therefore, starting with a
connected graph with su�ciently large chromatic number, we may assume that there is some level
L
i

that still has large chromatic number.
A natural approach to find a wheel vertex-minor is to find a long induced cycle in the level L

i

with large chromatic number, using the result by Chudnovsky, Scott, and Seymour (Theorem 8.1),
and then to construct a large wheel vertex-minor using the connected subgraph on L0 Y ¨ ¨ ¨ YL

i´1.
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Figure 3: An example procedure to find a large wheel. The graph G2 is pG1 ˚ w1 ˚ w3 ˚ w4 ˚ w6 ˚
z2 ˚ z5q ´ tw

i

, z
i

: 1 § i § 6u, and the graph G3 is pG2 ^ p2q2 ^ p5q5q ´ tp2, p5, q2, q5u. Since G3 is
isomorphic to a subdivision of W8, it contains W8 as a vertex-minor.

However, this strategy does not work well. For instance, we may find a graph depicted in the first
figure of Figure 2. In this graph, if we apply local complementations to create edges from v to the
bottom cycle, then we obtain a graph obtained from a large wheel by adding some parallel chords,
depicted in the right-hand figure. At this point, it is di�cult to remove these chords to finally
obtain a wheel graph as a vertex-minor.

To avoid such problems, we aim to find a similar structure, but having two disjoint large
independent sets having regular neighbors on the cycle. One simple example is depicted in the first
figure of Figure 3. In this example, one independent set is used to create a vertex having many
neighbors on the cycle, and the second set is used to remove the newly created chords. We depict
this procedure in Figure 3. This is one of the main procedures we will utilize to find a large wheel
as a vertex-minor.

Our argument begins with a structure arising from recursively taking repeated levelings. Ex-
plicitly, we aim to find pairwise disjoint vertex sets X

i

and Y1, . . . , Yi and Z1, . . . , Zi

in a graph G
with su�ciently large i such that

• GrX
i

s has large chromatic number,

• for each vertex v P X
i

and each x P t1, . . . , iu, v has a neighbor in Y
x

and no neighbors in Z
x

,

• for each x P t1, . . . , iu, every vertex in Y
x

has a neighbor in Z
x

,

• for each x P t1, . . . , iu, there exists a vertex r
x

P Z
x

where for every v P N
G

pY
x

q X Z
x

, there
is a path P from v to r

x

in GrZ
x

s with N
G

pY
x

q X V pP q “ tvu,
• for distinct integers x, y P t1, . . . , iu, there are no edges between Z

x

and Z
y

.
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• HrDs is a su�ciently long induced cycle,

• for every v P D, v has a neighbor in Y ,

• each vertex in Y has at most n ´ 1 neighbors in D,

there is a large subset Y 1 Ñ Y and a partition of HrDs into at most n ´ 1 paths such that for
each part, either vertices in Y 1 have the exactly same neighborhood, or neighborhoods appear in a
consecutive order. Figure 4 shows the two cases for how the vertices of Y 1 can be adjacent to the
vertices in HrDs which is in one subpath of an element of the partition of HrDs. We prove this
result in a more general setting, which we call the regular partition lemma (Proposition 4.2), with
the hope that it might be of use in other situations.

Depending on the outcome of the application of the regular partition lemma, we show G contains
a vertex-minor isomorphic to one of several cases we call a drum, a clam, and a hanging ladder,
depicted in Figures 5, 6, 7, respectively.

4 Regular partition lemma

For a sequence pA1, . . . , A
`

q of finite subsets of an interval I Ñ R, a partition tI1, . . . , I
k

u of I into
intervals is called a regular partition of I with respect to pA1, . . . , A

`

q if for all i P t1, . . . , ku, either
• A1 X I

i

“ A2 X I
i

“ ¨ ¨ ¨ “ A
`

X I
i

�“ H, or

• |A1 X I
i

| “ |A2 X I
i

| “ ¨ ¨ ¨ “ |A
`

X I
i

| ° 0, and for all j, j1 P t1, . . . , `u with j † j1,
maxpA

j

X I
i

q † minpA
j

1 X I
i

q, or
• |A1 X I

i

| “ |A2 X I
i

| “ ¨ ¨ ¨ “ |A
`

X I
i

| ° 0, and for all j, j1 P t1, . . . , `u with j † j1,
maxpA

j

1 X I
i

q † minpA
j

X I
i

q.
The number of parts k is called the order of the regular partition.

The following lemma is a strengthening of Erdős-Szekeres theorem. We simply follow the proof
of Seidenberg [18]. We say that a sequence is identical if all elements of the sequence are same.

Lemma 4.1. For every sequence pa1, . . . , ap`´1q3`1q of real numbers, there exists a subsequence
pa

i1 , . . . , ai
`

q that is identical or strictly increasing or strictly decreasing.

Proof. For each a
i

, we define a triplet pa1
i

, a2
i

, a3
i

q where

• a1
i

is the length of the longest identical subsequence ending at a
i

,

• a2
i

is the length of the longest strictly increasing subsequence ending at a
i

, and

• a3
i

is the length of the longest strictly decreasing subsequence ending at a
i

.

Note that pa1
i

, a2
i

, a3
i

q ‰ pa1
j

, a2
j

, a3
j

q for all i ‰ j, since a
j

“ a
i

or a
j

° a
i

or a
j

† a
i

. However,

the number of di↵erent triplets such that 0 † a1
i

, a2
i

, a3
i

† ` is at most p` ´ 1q3. Therefore, there
exists a

k

such that one of a1
k

, a2
k

, and a3
k

is `, completing the proof.
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Figure 4: The intended application of the regular partition lemma.

Assume that we have such X
i

, Y1, . . . , Yi, Z1, . . . , Zi

. If �pGrX
i

sq is su�ciently large, then some
connected component C of GrX

i

s has the same chromatic number as GrX
i

s. We choose a vertex
v in C, and we take a leveling L0, L1, . . . , Lm

of C where L
i

is the set of all vertices at distance
i from v. Then there is a level L

t

such that �pGrL
t

sq • �pGrX
i

sq{2. If t “ 1, we find a long
induced cycle in GrL1s and thus we can obtain a large wheel vertex-minor directly. Otherwise, it
holds that t • 2. Assign X

i`1 :“ L
t

and Y
i`1 :“ L

t´1 and Z
i`1 :“ L0 Y L1 Y ¨ ¨ ¨ Y L

t´2. Thus, by
requiring �pGrX

i

sq to be su�ciently large, we can either find X
i`1, Y1, . . . , Yi`1, Z1, . . . , Zi`1 with

the desired properties, or we can find a large wheel vertex-minor.
From this structure, we will reduce to several types of simpler graphs step by step in Sections 6

and 7. We first find a long induced cycle C “ q1q2 ¨ ¨ ¨ q
m

q1 in GrX
i

s using the result of Chudnovsky,
Scott, and Seymour (Theorem 8.1). Secondly, we obtain a structure called a pw, `q-patched cycle
where w “ i. The definition will be rigorously given in Section 7; for the moment, we proceed more
informally. A pw, `q-patched cycle consists of C along with vertex sets S

j

“ tsj1, sj2, . . . , sj
`

u Ñ Y
j

for each j P t1, 2, . . . , iu and a sequence of vertices q
b1 , qb2 , . . . , qb

`

with 1 § b1 † b2 † ¨ ¨ ¨ † b
`

§ m
such that

• for each x P t1, . . . , iu and y P t1, 2, . . . , `u, sx
y

is adjacent to q
b

y

and non-adjacent to q
b

z

for
all z P t1, . . . , `uzt1, . . . , yu.

We prove in Proposition 7.4 that the existence of this structure is guaranteed by assuming that the
graph has no large wheel vertex-minor and the conditions that

• C is su�ciently long,

• for every v P V pCq, v has a neighbor in each Y
j

,

• each vertex in Y1 Y Y2 Y ¨ ¨ ¨ Y Y
i

has at most n ´ 1 neighbors in C.

Note that the final condition if a vertex in Y1 YY2 Y ¨ ¨ ¨ YY
i

has at least n neighbors in C, then we
can directly obtain a W

n

vertex-minor (Lemma 6.5).
Up until this point in the argument, we have made no assumptions on the possible edges between

pairs of vertices in the set S1 Y S2 Y ¨ ¨ ¨ Y S
i

. As we argued in Figure 3, we want to find a large
independent set formed by two disjoint subsets from two distinct sets S

j

and S
j

1 . For this, we
apply a Ramsey-type argument, which we call the rectangular Ramsey lemma (Proposition 5.2).
This lemma implies that there exist a large subset J Ñ t1, 2, . . . , `u and tb1, b2u P t1, 2, . . . , iu such
that tsb1

x

: x P Ju Y tsb2
x

: x P Ju is an independent set, if G has no large clique.
We further refine the adjacency relations between tsb1

x

: x P Ju Y tsb2
x

: x P Ju and C using the
following Ramsey-type argument: for a graph H on the vertex set D Y Y such that

6



 
 


