Coloring Graphs with Forbidden Minors

Zi-Xia Song (UCF)

University of Central Florida

August 21-25, 2017
Geometric and Structural Graph Theory Banff International Research Station

Joint work with Martin Rolek

Brief Background

- A graph $G=(V, E)$ is t-colorable if \exists a mapping $c: V \rightarrow\{1,2, \ldots, t\}$ such that for any $x y \in E, c(x) \neq c(y)$.

Brief Background

- A graph $G=(V, E)$ is t-colorable if \exists a mapping $c: V \rightarrow\{1,2, \ldots, t\}$ such that for any $x y \in E, c(x) \neq c(y)$.
- $\chi(G):=\min \{t: G$ is t -colorable $\}$

Brief Background

- A graph $G=(V, E)$ is t-colorable if \exists a mapping $c: V \rightarrow\{1,2, \ldots, t\}$ such that for any $x y \in E, c(x) \neq c(y)$.
- $\chi(G):=\min \{t: G$ is t -colorable $\}$
- G is t-chromatic if $\chi(G)=t$.

Brief Background

- A graph $G=(V, E)$ is t-colorable if \exists a mapping $c: V \rightarrow\{1,2, \ldots, t\}$ such that for any $x y \in E, c(x) \neq c(y)$.
- $\chi(G):=\min \{t: G$ is t -colorable $\}$
- G is t-chromatic if $\chi(G)=t$.
- $H \subseteq G:=H$ is a subgraph of G.

Brief Background

- A graph $G=(V, E)$ is t-colorable if \exists a mapping $c: V \rightarrow\{1,2, \ldots, t\}$ such that for any $x y \in E, c(x) \neq c(y)$.
- $\chi(G):=\min \{t: G$ is t -colorable $\}$
- G is t-chromatic if $\chi(G)=t$.
- $H \subseteq G:=H$ is a subgraph of G.
- $G>H:=H$ is a minor of G

Brief Background

- A graph $G=(V, E)$ is t-colorable if \exists a mapping $c: V \rightarrow\{1,2, \ldots, t\}$ such that for any $x y \in E, c(x) \neq c(y)$.
- $\chi(G):=\min \{t: G$ is t-colorable $\}$
- G is t-chromatic if $\chi(G)=t$.
- $H \subseteq G:=H$ is a subgraph of G.
- $G>H:=H$ is a minor of G
- $h(G):=\max \left\{t: G>K_{t}\right\} \quad$ Hadwiger number of G

Brief Background

- A graph $G=(V, E)$ is t-colorable if \exists a mapping $c: V \rightarrow\{1,2, \ldots, t\}$ such that for any $x y \in E, c(x) \neq c(y)$.
- $\chi(G):=\min \{t: G$ is t-colorable $\}$
- G is t-chromatic if $\chi(G)=t$.
- $H \subseteq G:=H$ is a subgraph of G.
- $G>H:=H$ is a minor of G
- $h(G):=\max \left\{t: G>K_{t}\right\} \quad$ Hadwiger number of G
- $\alpha(G):=\max \left\{t: K_{t} \subseteq \bar{G}\right\} \quad$ independence number of G

Brief Background

- If $K_{t} \subseteq G$, then $\chi(G) \geq t$.

Brief Background

- If $K_{t} \subseteq G$, then $\chi(G) \geq t$.
- If $\chi(G)=t$, then $K_{t} \subseteq G$???

Brief Background

- If $K_{t} \subseteq G$, then $\chi(G) \geq t$.
- If $\chi(G)=t$, then $K_{t} \subseteq G$???

NO!

Brief Background

- If $K_{t} \subseteq G$, then $\chi(G) \geq t$.
- If $\chi(G)=t$, then $K_{t} \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G)>k$ and $g(G)>k$.

Brief Background

- If $K_{t} \subseteq G$, then $\chi(G) \geq t$.
- If $\chi(G)=t$, then $K_{t} \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G)>k$ and $g(G)>k$.

- What causes the chromatic number so high?

Brief Background

- If $K_{t} \subseteq G$, then $\chi(G) \geq t$.
- If $\chi(G)=t$, then $K_{t} \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G)>k$ and $g(G)>k$.

- What causes the chromatic number so high?
- If $\chi(G)=t$, then $T K_{t} \subseteq G$???

Brief Background

- If $K_{t} \subseteq G$, then $\chi(G) \geq t$.
- If $\chi(G)=t$, then $K_{t} \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G)>k$ and $g(G)>k$.

- What causes the chromatic number so high?
- If $\chi(G)=t$, then $T K_{t} \subseteq G$??? NO!

Brief Background

- If $K_{t} \subseteq G$, then $\chi(G) \geq t$.
- If $\chi(G)=t$, then $K_{t} \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G)>k$ and $g(G)>k$.

- What causes the chromatic number so high?
- If $\chi(G)=t$, then $T K_{t} \subseteq G$??? NO! Hajós Conjecture

Brief Background

- If $K_{t} \subseteq G$, then $\chi(G) \geq t$.
- If $\chi(G)=t$, then $K_{t} \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G)>k$ and $g(G)>k$.

- What causes the chromatic number so high?
- If $\chi(G)=t$, then $T K_{t} \subseteq G$??? NO! Hajós Conjecture
- THM (He, Wang \& Yu 2017+): every 5-connected non-planar graph contains a $T K_{5}$.

Brief Background

- If $K_{t} \subseteq G$, then $\chi(G) \geq t$.
- If $\chi(G)=t$, then $K_{t} \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G)>k$ and $g(G)>k$.

- What causes the chromatic number so high?
- If $\chi(G)=t$, then $T K_{t} \subseteq G$??? NO! Hajós Conjecture
- THM (He, Wang \& Yu 2017+): every 5-connected non-planar graph contains a $T K_{5}$.
- This settles the Kelmans-Seymour conjecture from 1970+.

Brief Background

- If $K_{t} \subseteq G$, then $\chi(G) \geq t$.
- If $\chi(G)=t$, then $K_{t} \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G)>k$ and $g(G)>k$.

- What causes the chromatic number so high?
- If $\chi(G)=t$, then $T K_{t} \subseteq G$??? NO! Hajós Conjecture
- THM (He, Wang \& Yu 2017+): every 5-connected non-planar graph contains a $T K_{5}$.
- This settles the Kelmans-Seymour conjecture from 1970+.
- If $\chi(G)=t$, then G contains a K_{t} minor ???

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable,

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable, i.e., $h(G) \geq \chi(G)$ for all G.

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable, i.e., $h(G) \geq \chi(G)$ for all G.

- "perhaps the most famous conjecture in GT" Seymour (2016)

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable, i.e., $h(G) \geq \chi(G)$ for all G.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy

Dirac (1952); Hadwiger (1943)

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable, i.e., $h(G) \geq \chi(G)$ for all G.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy

Dirac (1952); Hadwiger (1943)
no K_{3} minor

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable, i.e., $h(G) \geq \chi(G)$ for all G.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy

Dirac (1952); Hadwiger (1943)
no K_{3} minor \Longrightarrow acyclic

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable, i.e., $h(G) \geq \chi(G)$ for all G.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy

Dirac (1952); Hadwiger (1943)
no K_{3} minor \Longrightarrow acyclic \Longrightarrow bipartite

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable, i.e., $h(G) \geq \chi(G)$ for all G.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy

Dirac (1952); Hadwiger (1943)
no K_{3} minor \Longrightarrow acyclic \Longrightarrow bipartite \Longrightarrow 2-colorable

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable, i.e., $h(G) \geq \chi(G)$ for all G.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy \quad Dirac (1952); Hadwiger (1943)
no K_{3} minor \Longrightarrow acyclic \Longrightarrow bipartite \Longrightarrow 2-colorable
- $t \geq 4, \mathrm{HC} \Longrightarrow 4 \mathrm{CT}$

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable, i.e., $h(G) \geq \chi(G)$ for all G.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy

Dirac (1952); Hadwiger (1943)
no K_{3} minor \Longrightarrow acyclic \Longrightarrow bipartite \Longrightarrow 2-colorable

- $t \geq 4, \mathrm{HC} \Longrightarrow 4 \mathrm{CT}$
- $t=4, \quad \mathrm{HC} \Longleftrightarrow 4 \mathrm{CT}$

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable, i.e., $h(G) \geq \chi(G)$ for all G.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy

Dirac (1952); Hadwiger (1943)
no K_{3} minor \Longrightarrow acyclic \Longrightarrow bipartite \Longrightarrow 2-colorable

- $t \geq 4, \mathrm{HC} \Longrightarrow 4 \mathrm{CT}$
- $t=4, \quad \mathrm{HC} \Longleftrightarrow 4 \mathrm{CT}$
- $t=5, \mathrm{HC} \Longleftrightarrow 4 \mathrm{CT}$ Robertson, Seymour \& Thomas (1993)

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable, i.e., $h(G) \geq \chi(G)$ for all G.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy

Dirac (1952); Hadwiger (1943)
no K_{3} minor \Longrightarrow acyclic \Longrightarrow bipartite \Longrightarrow 2-colorable

- $t \geq 4, \mathrm{HC} \Longrightarrow 4 \mathrm{CT}$
- $t=4, \quad \mathrm{HC} \Longleftrightarrow 4 \mathrm{CT}$
- $t=5, \mathrm{HC} \Longleftrightarrow 4 \mathrm{CT}$ Robertson, Seymour \& Thomas (1993)
- wide open for $t \geq 6$

Hadwiger's Conjecture

Hadwiger's Conjecture (1943): For every $t \geq 0$, every graph with no K_{t+1} minor is t-colorable, i.e., $h(G) \geq \chi(G)$ for all G.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy

Dirac (1952); Hadwiger (1943)
no K_{3} minor \Longrightarrow acyclic \Longrightarrow bipartite \Longrightarrow 2-colorable

- $t \geq 4, \mathrm{HC} \Longrightarrow 4 \mathrm{CT}$
- $t=4, \quad \mathrm{HC} \Longleftrightarrow 4 \mathrm{CT}$
- $t=5, \mathrm{HC} \Longleftrightarrow 4 \mathrm{CT}$ Robertson, Seymour \& Thomas (1993)
- wide open for $t \geq 6$
- Not even known yet whether every graph with no K_{7} minor is 7-colorable.

K_{p}^{-}and $K_{p}^{=}$

- K_{p}^{-}: the graph obtained from K_{p} by deleting one edge

K_{p}^{-}and $K_{p}^{=}$

- K_{p}^{-}: the graph obtained from K_{p} by deleting one edge
- $K_{p}^{=}$: the set of non-isomorphic graphs obtained from K_{p} by deleting two edges

K_{p}^{-}and $K_{p}^{=}$

- K_{p}^{-}: the graph obtained from K_{p} by deleting one edge
- $K_{p}^{=}$: the set of non-isomorphic graphs obtained from K_{p} by deleting two edges
- G has a $K_{p}^{=}$minor $\Longleftrightarrow G$ contains at least one of the two graphs in $K_{p}^{=}$as a minor.

K_{p}^{-}and $K_{p}^{=}$

- K_{p}^{-}: the graph obtained from K_{p} by deleting one edge
- $K_{p}^{=}$: the set of non-isomorphic graphs obtained from K_{p} by deleting two edges
- G has a $K_{p}^{=} \operatorname{minor} \Longleftrightarrow G$ contains at least one of the two graphs in $K_{p}^{=}$as a minor.
- G has no $K_{p}^{=}$minor $\Longleftrightarrow G$ contains neither of the two graphs in K_{p}^{\risingdotseq} as a minor

Partial results towards Hadwiger's Conjecture

Partial results towards Hadwiger's Conjecture

- $t=7$:
- If $G \ngtr K_{7}^{=}$, then G is 6 -colorable.
- If $G \ngtr K_{7}^{-}$, then G is 7 -colorable.

Jakobsen (1971)

- If $G \ngtr K_{7}$, then G is 9 -colorable.
- If $G \ngtr K_{7}$, then G is 6 -colorable or $G>K_{4,4}$.

Kawarabayashi \& Toft (2005)

- If $G \ngtr K_{7}$, then G is 8 -colorable. Albar \& Gonçalves (2013+)

Partial results towards Hadwiger's Conjecture

- $t=7$:
- If $G \ngtr K_{7}^{=}$, then G is 6 -colorable.
- If $G \ngtr K_{7}^{-}$, then G is 7 -colorable.
- If $G \ngtr K_{7}$, then G is 9 -colorable. Jakobsen (1983)
- If $G \ngtr K_{7}$, then G is 6 -colorable or $G>K_{4,4}$. Kawarabayashi \& Toft (2005)
- If $G \ngtr K_{7}$, then G is 8-colorable. Albar \& Gonçalves (2013+)
- $t=8$:
- If $G \ngtr K_{8}^{=}$, then G is 9-colorable. Jakobsen (1972)
- If $G \ngtr K_{8}^{-}$, then G is 10 -colorable. S. (2005)
- If $G \ngtr K_{8}$, then G is 11-colorable. Jørgensen (1994)
- If $G \ngtr K_{8}$, then G is 10 -colorable. Albar \& Gonçalves (2013+)

Partial results towards Hadwiger's Conjecture

- $t=7$:
- If $G \ngtr K_{7}^{=}$, then G is 6-colorable. Jakobsen (1971)
- If $G \ngtr K_{7}^{-}$, then G is 7-colorable. Jakobsen (1983)
- If $G \ngtr K_{7}$, then G is 9-colorable.
- If $G \ngtr K_{7}$, then G is 6 -colorable or $G>K_{4,4}$. Kawarabayashi \& Toft (2005)
- If $G \ngtr K_{7}$, then G is 8-colorable. Albar \& Gonçalves (2013+)
- $t=8$:
- If $G \ngtr K_{8}^{=}$, then G is 9-colorable. Jakobsen (1972)
- If $G \ngtr K_{8}^{-}$, then G is 10 -colorable. S. (2005)
- If $G \ngtr K_{8}$, then G is 11-colorable. Jørgensen (1994)
- If $G \ngtr K_{8}$, then G is 10 -colorable. Albar \& Gonçalves (2013+)
- $t=9$:
- If $G \ngtr K_{9}$, then G is 13 -colorable.
S. \& Thomas (2006)

Is every graph with no K_{7} minor 7-colorable?

For a positive integer k, a graph G is k-contraction-critical if $\chi(G)=k$ but any proper minor of G is $(k-1)$-colorable.

Is every graph with no K_{7} minor 7-colorable?

For a positive integer k, a graph G is k-contraction-critical if $\chi(G)=k$ but any proper minor of G is $(k-1)$-colorable.

LEM (Dirac 1960): Every k-contraction-critical graph G satisfies the following:

Is every graph with no K_{7} minor 7-colorable?

For a positive integer k, a graph G is k-contraction-critical if $\chi(G)=k$ but any proper minor of G is $(k-1)$-colorable.

LEM (Dirac 1960): Every k-contraction-critical graph G satisfies the following:

- for any $v \in V(G), \alpha(G[N(v)]) \leq d_{G}(v)-k+2$.

Is every graph with no K_{7} minor 7-colorable?

For a positive integer k, a graph G is k-contraction-critical if $\chi(G)=k$ but any proper minor of G is $(k-1)$-colorable.

LEM (Dirac 1960): Every k-contraction-critical graph G satisfies the following:

- for any $v \in V(G), \alpha(G[N(v)]) \leq d_{G}(v)-k+2$.
- no separating set of G is a clique.

Is every graph with no K_{7} minor 7-colorable?

For a positive integer k, a graph G is k-contraction-critical if $\chi(G)=k$ but any proper minor of G is $(k-1)$-colorable.

LEM (Dirac 1960): Every k-contraction-critical graph G satisfies the following:

- for any $v \in V(G), \alpha(G[N(v)]) \leq d_{G}(v)-k+2$.
- no separating set of G is a clique.

THM (Mader 1960): For $k \geq 7$, every k-contraction-critical graph is 7-connected.

Is every graph with no K_{7} minor 7 -colorable?

For a positive integer k, a graph G is k-contraction-critical if $\chi(G)=k$ but any proper minor of G is $(k-1)$-colorable.

LEM (Dirac 1960): Every k-contraction-critical graph G satisfies the following:

- for any $v \in V(G), \alpha(G[N(v)]) \leq d_{G}(v)-k+2$.
- no separating set of G is a clique.

THM (Mader 1960): For $k \geq 7$, every k-contraction-critical graph is 7-connected.

THM(Mader 1968): For every integer $p=1,2, \ldots, 7$, a graph on $n \geq p$ vertices and at least $(p-2) n-\binom{p-1}{2}+1$ edges has a K_{p} minor.

Is every graph with no K_{7} minor 7 -colorable?

For a positive integer k, a graph G is k-contraction-critical if $\chi(G)=k$ but any proper minor of G is $(k-1)$-colorable.

LEM (Dirac 1960): Every k-contraction-critical graph G satisfies the following:

- for any $v \in V(G), \alpha(G[N(v)]) \leq d_{G}(v)-k+2$.
- no separating set of G is a clique.

THM (Mader 1960): For $k \geq 7$, every k-contraction-critical graph is 7-connected.

THM(Mader 1968): For every integer $p=1,2, \ldots, 7$, a graph on $n \geq p$ vertices and at least $(p-2) n-\binom{p-1}{2}+1$ edges has a K_{p} minor. Mader's bound

Is every graph with no K_{7} minor 7-colorable?

THM (Fabila-Monroy \& Wood 2013): Let G be a 4-connected graph and let $v_{1}, v_{2}, v_{3}, v_{4} \in V(G)$ be any four distinct vertices. Then either G contains a K_{4}-minor rooted at $v_{1}, v_{2}, v_{3}, v_{4}$, or G is planar and $v_{1}, v_{2}, v_{3}, v_{4}$ are on a common face.

Is every graph with no K_{7} minor 7 -colorable?

THM (Fabila-Monroy \& Wood 2013): Let G be a 4-connected graph and let $v_{1}, v_{2}, v_{3}, v_{4} \in V(G)$ be any four distinct vertices. Then either G contains a K_{4}-minor rooted at $v_{1}, v_{2}, v_{3}, v_{4}$, or G is planar and $v_{1}, v_{2}, v_{3}, v_{4}$ are on a common face.

THM (Kawarabayashi, Luo, Niu \& Zhang 2005): Let G be a $(k+2)$-connected graph, where $k \geq 5$ is an integer. If G contains three K_{k} 's, say L_{1}, L_{2}, L_{3}, such that $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 3(k-1)$, then $G>K_{k+2}$.

Is every graph with no K_{7} minor 7-colorable?

THM (Fabila-Monroy \& Wood 2013): Let G be a 4-connected graph and let $v_{1}, v_{2}, v_{3}, v_{4} \in V(G)$ be any four distinct vertices. Then either G contains a K_{4}-minor rooted at $v_{1}, v_{2}, v_{3}, v_{4}$, or G is planar and $v_{1}, v_{2}, v_{3}, v_{4}$ are on a common face.

THM (Kawarabayashi, Luo, Niu \& Zhang 2005): Let G be a $(k+2)$-connected graph, where $k \geq 5$ is an integer. If G contains three K_{k} 's, say L_{1}, L_{2}, L_{3}, such that $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 3(k-1)$, then $G>K_{k+2}$.

- $k=4$,

Robertson, Seymour \& Thomas (1993)

Is every graph with no K_{7} minor 7 -colorable?

THM (Fabila-Monroy \& Wood 2013): Let Ge a 4-connected graph and let $v_{1}, v_{2}, v_{3}, v_{4} \in V(G)$ be any four distinct vertices. Then either G contains a K_{4}-minor rooted at $v_{1}, v_{2}, v_{3}, v_{4}$, or G is planar and $v_{1}, v_{2}, v_{3}, v_{4}$ are on a common face.

THM (Kawarabayashi, Luo, Niu \& Zhang 2005): Let G be a $(k+2)$-connected graph, where $k \geq 5$ is an integer. If G contains three K_{k} 's, say L_{1}, L_{2}, L_{3}, such that $\left|L_{1} \cup L_{2} \cup L_{3}\right| \geq 3(k-1)$, then $G>K_{k+2}$.

- $k=4$,

Robertson, Seymour \& Thomas (1993)

- $k=5$,

Kawarabayashi \& Toft (2005)

Is every graph with no K_{7} minor 7 -colorable?

LEM (Rolek \& S. 2015++): If $G \neq K_{8}$ is an 8-contraction-critical graph having two different K_{5} 's with exactly three vertices in common or three different K_{5} 's as depicted below, then $G>K_{7}$.

(a)

(b)

Is every graph with no K_{7} minor 7 -colorable?

LEM (Rolek \& S. 2015++): If $G \neq K_{8}$ is an 8-contraction-critical graph having two different K_{5} 's with exactly three vertices in common or three different K_{5} 's as depicted below, then $G>K_{7}$.

(d)

- Applied rooted K_{4}-minor result to the case when two K_{5} 's have exactly three vertices in common.

Is every graph with no K_{7} minor 7 -colorable?

For an integer $i \geq 0$, let n_{i} denotes the number of vertices of degree i in a graph G.

Is every graph with no K_{7} minor 7 -colorable?

For an integer $i \geq 0$, let n_{i} denotes the number of vertices of degree i in a graph G.

THM (Rolek \& S. 2015++): If G is a 8-contraction-critical, K_{7}-minor-free graph, then the following hold.

- $8 \leq \delta(G) \leq 9$ and $2 n_{8}+n_{9} \geq 30$.

Is every graph with no K_{7} minor 7 -colorable?

For an integer $i \geq 0$, let n_{i} denotes the number of vertices of degree i in a graph G.

THM (Rolek \& S. 2015++): If G is a 8-contraction-critical, K_{7}-minor-free graph, then the following hold.

- $8 \leq \delta(G) \leq 9$ and $2 n_{8}+n_{9} \geq 30$.
- For any $v \in V(G)$ with $d_{G}(v)=8, G[N(v)]$ contains $2 K_{4}$ as a subgraph.

Is every graph with no K_{7} minor 7 -colorable?

For an integer $i \geq 0$, let n_{i} denotes the number of vertices of degree i in a graph G.

THM (Rolek \& S. 2015++): If G is a 8-contraction-critical, K_{7}-minor-free graph, then the following hold.

- $8 \leq \delta(G) \leq 9$ and $2 n_{8}+n_{9} \geq 30$.
- For any $v \in V(G)$ with $d_{G}(v)=8, G[N(v)]$ contains $2 K_{4}$ as a subgraph.
- $n_{8} \leq 2$.

Is every graph with no K_{7} minor 7 -colorable?

For an integer $i \geq 0$, let n_{i} denotes the number of vertices of degree i in a graph G.

THM (Rolek \& S. 2015++): If G is a 8-contraction-critical, K_{7}-minor-free graph, then the following hold.

- $8 \leq \delta(G) \leq 9$ and $2 n_{8}+n_{9} \geq 30$.
- For any $v \in V(G)$ with $d_{G}(v)=8, G[N(v)]$ contains $2 K_{4}$ as a subgraph.
- $n_{8} \leq 2$.
- for any $v \in V(G)$ with $d_{G}(v)=9$, either $G[N(v)]$ contains K_{4} as a subgraph or $0 \leq \delta(G[N(v)]) \leq 4$.

Is every graph with no K_{7} minor 7 -colorable?

For an integer $i \geq 0$, let n_{i} denotes the number of vertices of degree i in a graph G.

THM (Rolek \& S. 2015++): If G is a 8-contraction-critical, K_{7}-minor-free graph, then the following hold.

- $8 \leq \delta(G) \leq 9$ and $2 n_{8}+n_{9} \geq 30$.
- For any $v \in V(G)$ with $d_{G}(v)=8, G[N(v)]$ contains $2 K_{4}$ as a subgraph.
- $n_{8} \leq 2$.
- for any $v \in V(G)$ with $d_{G}(v)=9$, either $G[N(v)]$ contains K_{4} as a subgraph or $0 \leq \delta(G[N(v)]) \leq 4$.
- We were unable to prove that G is 8 -connected.

Is every graph with no K_{7} minor 7 -colorable?

For an integer $i \geq 0$, let n_{i} denotes the number of vertices of degree i in a graph G.

THM (Rolek \& S. 2015++): If G is a 8-contraction-critical, K_{7}-minor-free graph, then the following hold.

- $8 \leq \delta(G) \leq 9$ and $2 n_{8}+n_{9} \geq 30$.
- For any $v \in V(G)$ with $d_{G}(v)=8, G[N(v)]$ contains $2 K_{4}$ as a subgraph.
- $n_{8} \leq 1$.
(Thanks to Robin Thomas)
- for any $v \in V(G)$ with $d_{G}(v)=9$, either $G[N(v)]$ contains K_{4} as a subgraph or $0 \leq \delta(G[N(v)]) \leq 4$.
- We were unable to prove that G is 8 -connected.

Is every graph with no K_{7} minor 7 -colorable?

LEM (Rolek \& S. 2015++): Let H be a graph with $|H|=8$ and $\alpha(H)=2$. Then H contains either K_{4} or H_{8} as a subgraph, where H_{8} is depicted below.

Is every graph with no K_{7} minor 7 -colorable?

LEM (Rolek \& S. 2015++): Let H be a graph with $|H|=8$ and $\alpha(H)=2$. Then H contains either K_{4} or H_{8} as a subgraph, where H_{8} is depicted below.

Is every graph with no K_{7} minor 7 -colorable?

LEM (Rolek \& S. 2015++): Let H be a graph with $|H|=9$ and $\delta(H) \geq 5$. Then either $H>K_{6}$, or H is isomorphic to one of the 17 graphs. Moreover, if H is K_{4}-free, then either $H>K_{6}$, or H is isomorphic to $\overline{K_{3}}+C_{6}$.

Wonderful Lemma

An edge e is a missing edge in G if $e \in E(\bar{G})$.

Wonderful Lemma

An edge e is a missing edge in G if $e \in E(\bar{G})$.
LEM (Rolek \& S. 2017): Let G be any k-contraction-critical graph. Let $x \in V(G)$ be a vertex of degree $k+s$ with $\alpha(G[N(x)])=s+2$ and let $S \subset N(x)$ with $|S|=s+2$ be any independent set, where $k \geq 4$ and $s \geq 0$ are integers. Let M be a set of missing edges of $G[N(x) \backslash S]$. Then there exists a collection $\left\{P_{u v}: u v \in M\right\}$ of paths in G such that for each $u v \in M, P_{u v}$ has ends $\{u, v\}$ and all its internal vertices in $G \backslash N[x]$. Moreover, if vertices u, v, w, z with $u v, w z \in M$ are distinct, then the paths $P_{u v}$ and $P_{w z}$ are vertex-disjoint.

Zi-Xia Song (UCF) Coloring Graphs with Forbidden Minors

Zi-Xia Song (UCF) Coloring Graphs with Forbidden Minors

Main Results

THM (Rolek \& S. 2017): Every graph with no K_{t} minor is (2t-6)-colorable, where $t \in\{7,8,9\}$.

Main Results

THM (Rolek \& S. 2017): Every graph with no K_{t} minor is (2t-6)-colorable, where $t \in\{7,8,9\}$.

- every graph with no K_{7} minor is 8-colorable;

Main Results

THM (Rolek \& S. 2017): Every graph with no K_{t} minor is ($2 t-6$)-colorable, where $t \in\{7,8,9\}$.

- every graph with no K_{7} minor is 8-colorable;
- every graph with no K_{8} minor is 10 -colorable; and

Main Results

THM (Rolek \& S. 2017): Every graph with no K_{t} minor is ($2 t-6$)-colorable, where $t \in\{7,8,9\}$.

- every graph with no K_{7} minor is 8-colorable;
- every graph with no K_{8} minor is 10 -colorable; and
- every graph with no K_{9} minor is 12-colorable.

Main Results

THM (Rolek \& S. 2017): Every graph with no K_{t} minor is (2t-6)-colorable, where $t \in\{7,8,9\}$.

- every graph with no K_{7} minor is 8-colorable;
- every graph with no K_{8} minor is 10 -colorable; and
- every graph with no K_{9} minor is 12-colorable.
- Our proofs for $t=7,8$ are short and computer-free.

An Application of Wonderful Lemma

Conjecture (Rolek \& S. 2017): For every $t \geq 1$, every graph G on $n \geq t$ vertices and at least $(t-2) n-\binom{t-1}{2}+1$ edges either contains a K_{t} minor or is $(t-1)$-colorable.

An Application of Wonderful Lemma

Conjecture (Rolek \& S. 2017): For every $t \geq 1$, every graph G on $n \geq t$ vertices and at least $(t-2) n-\binom{t-1}{2}+1$ edges either contains a K_{t} minor or is $(t-1)$-colorable.

- True for $t \leq 9$ and open for $t \geq 10$.

An Application of Wonderful Lemma

Conjecture (Rolek \& S. 2017): For every $t \geq 1$, every graph G on $n \geq t$ vertices and at least $(t-2) n-\binom{t-1}{2}+1$ edges either contains a K_{t} minor or is $(t-1)$-colorable.

- True for $t \leq 9$ and open for $t \geq 10$.

THM (Rolek \& S. 2017): For any $t \geq 6$, if the above conjecture is true, then every graph with no K_{t} minor is $(2 t-6)$-colorable.

An Application of Wonderful Lemma

Conjecture (Rolek \& S. 2017): For every $t \geq 1$, every graph G on $n \geq t$ vertices and at least $(t-2) n-\binom{t-1}{2}+1$ edges either contains a K_{t} minor or is $(t-1)$-colorable.

- True for $t \leq 9$ and open for $t \geq 10$.

THM (Rolek \& S. 2017): For any $t \geq 6$, if the above conjecture is true, then every graph with no K_{t} minor is $(2 t-6)$-colorable.

- Gives a new proof of our previous result.

An Application of Wonderful Lemma

Conjecture (Rolek \& S. 2017): For every $t \geq 1$, every graph G on $n \geq t$ vertices and at least $(t-2) n-\binom{t-1}{2}+1$ edges either contains a K_{t} minor or is $(t-1)$-colorable.

- True for $t \leq 9$ and open for $t \geq 10$.

THM (Rolek \& S. 2017): For any $t \geq 6$, if the above conjecture is true, then every graph with no K_{t} minor is $(2 t-6)$-colorable.

- Gives a new proof of our previous result.
- Only requires $(2 t-6)$-colorable instead of $(t-1)$-colorable in the above Conjecture.

Proof Sketch

THM (Rolek \& S. 2017): For any $t \geq 6$, if the above conjecture is true, then every graph with no K_{t} minor is $(2 t-6)$-colorable. Proof:

Proof Sketch

THM (Rolek \& S. 2017): For any $t \geq 6$, if the above conjecture is true, then every graph with no K_{t} minor is $(2 t-6)$-colorable.

Proof:

- Suppose $\chi(G) \geq 2 t-5$.

Proof Sketch

THM (Rolek \& S. 2017): For any $t \geq 6$, if the above conjecture is true, then every graph with no K_{t} minor is $(2 t-6)$-colorable.

Proof:

- Suppose $\chi(G) \geq 2 t-5$.
- $\delta(G) \leq 2 t-5$ by the assumed truth of our conjecture.

Proof Sketch

THM (Rolek \& S. 2017): For any $t \geq 6$, if the above conjecture is true, then every graph with no K_{t} minor is $(2 t-6)$-colorable.

Proof:

- Suppose $\chi(G) \geq 2 t-5$.
- $\delta(G) \leq 2 t-5$ by the assumed truth of our conjecture.
- G is $(2 t-5)$-contraction-critical and $\delta(G)=2 t-5$.

Proof Sketch

THM (Rolek \& S. 2017): For any $t \geq 6$, if the above conjecture is true, then every graph with no K_{t} minor is $(2 t-6)$-colorable.

Proof:

- Suppose $\chi(G) \geq 2 t-5$.
- $\delta(G) \leq 2 t-5$ by the assumed truth of our conjecture.
- G is $(2 t-5)$-contraction-critical and $\delta(G)=2 t-5$.
- For any $x \in V(G)$ with $d_{G}(x)=2 t-5, \alpha(G[N(x)])=2$.

Proof Sketch

THM (Rolek \& S. 2017): For any $t \geq 6$, if the above conjecture is true, then every graph with no K_{t} minor is $(2 t-6)$-colorable.

Proof:

- Suppose $\chi(G) \geq 2 t-5$.
- $\delta(G) \leq 2 t-5$ by the assumed truth of our conjecture.
- G is $(2 t-5)$-contraction-critical and $\delta(G)=2 t-5$.
- For any $x \in V(G)$ with $d_{G}(x)=2 t-5, \alpha(G[N(x)])=2$.
- $\chi(G[N(x)]) \geq t-2$.

Proof Sketch

THM (Rolek \& S. 2017): For any $t \geq 6$, if the above conjecture is true, then every graph with no K_{t} minor is $(2 t-6)$-colorable.

Proof:

- Suppose $\chi(G) \geq 2 t-5$.
- $\delta(G) \leq 2 t-5$ by the assumed truth of our conjecture.
- G is $(2 t-5)$-contraction-critical and $\delta(G)=2 t-5$.
- For any $x \in V(G)$ with $d_{G}(x)=2 t-5, \alpha(G[N(x)])=2$.
- $\chi(G[N(x)]) \geq t-2$.
- $\omega(G[N(x)]) \leq t-3$;

Proof Sketch

THM (Rolek \& S. 2017): For any $t \geq 6$, if the above conjecture is true, then every graph with no K_{t} minor is $(2 t-6)$-colorable.

Proof:

- Suppose $\chi(G) \geq 2 t-5$.
- $\delta(G) \leq 2 t-5$ by the assumed truth of our conjecture.
- G is $(2 t-5)$-contraction-critical and $\delta(G)=2 t-5$.
- For any $x \in V(G)$ with $d_{G}(x)=2 t-5, \alpha(G[N(x)])=2$.
- $\chi(G[N(x)]) \geq t-2$.
- $\omega(G[N(x)]) \leq t-3 ; \quad \delta(G[N(x)]) \geq t-2$.

Proof Sketch

Proof Sketch

- $t \geq 6$ is only required here.

Proof Sketch

$$
d_{N(x)}(y)=t-3 \geq 3
$$

- y has $t-3$ neighbors and $t-3$ non-neighbors.
- Contracting the blue seagull into a single vertex, all purple paths onto z yield a K_{t-1} minor in $N(x)$.

Proof Sketch

Case 1: $\chi(G[N(x)]) \geq t$

where $V_{1}, V_{2}, \ldots, V_{t}$ are the color classes of $G[N(x)]$.

Proof Sketch

Case 1: $\chi(G[N(x)]) \geq t$

where $V_{1}, V_{2}, \ldots, V_{t}$ are the color classes of $G[N(x)]$.

Proof Sketch

Case 1: $\chi(G[N(x)]) \geq t$

where $V_{1}, V_{2}, \ldots, V_{t}$ are the color classes of $G[N(x)]$.

Proof Sketch

Case 2: $\chi(G[N(x)])=t-2$

- exact one singleton.

Proof Sketch

Case 2: $\chi(G[N(x)])=t-2$

- a must be complete to some V_{i}, say V_{2}.
- b, c must have a common neighbor in some V_{j}, say $e \in V_{3}$.
- We may assume that $d b \in E(G)$.

Proof Sketch

Case 2: $\chi(G[N(x)])=t-2$

- P: ad-path; $\quad Q$: ed-path.
- Contracting $P-a$ and $Q-e$ onto d.
- Contracting the edge ce.

Proof Sketch

Case 3: $\chi(G[N(x)])=t-1$

- exact three singletons.

Proof Sketch

Case 3: $\chi(G[N(x)])=t-1$

- Each vertex in $V_{1} \cup V_{2} \cup V_{3}$ is adjacent to either a or b.
- Assume a has more neighbors in $V_{1} \cup V_{2} \cup V_{3}$ than b.

Proof Sketch

Case 3: $\chi(G[N(x)])=t-1$

- a is complete to $V_{1} \cup V_{2} \cup V_{3}$.

Proof Sketch

Case 3: $\chi(G[N(x)])=t-1$

- a is complete to $V_{1} \cup V_{2} \cup V_{3}$.

Proof Sketch

Case 3: $\chi(G[N(x)])=t-1$

- a is complete to $V_{1} \cup V_{2}$ and b is complete to V_{3}.

Proof Sketch

Case 3: $\chi(G[N(x)])=t-1$

- a is adjacent to exactly two of the three singletons.
- $a V_{3}$-path is disjoint from $b V_{1}$ - and $b V_{2}$-path.
- ab-path may intersect with each of $a V_{3^{-}}, b V_{1^{-}}$and $b V_{2}$-path.

Proof Sketch

Case 3: $\chi(G[N(x)])=t-1$

- d: first vertex on the $a b$-path (when read from a to b) which is also on the $b V_{1}$ or $b V_{2}$-path.
- c : first vertex on the $a V_{3}$-path (when read from V_{3} to a) which is also on the $d a$-subpath of the ba-path.
- $d \neq a, c \neq b, c d$-subpath is disjoint from $c V_{3}$-subpath.

Main Results

THM (Rolek \& S. 2017): Every graph with no K_{8}^{-}minor is 9-colorable.

Main Results

THM (Rolek \& S. 2017): Every graph with no K_{8}^{-}minor is 9-colorable.

THM (Rolek \& S. 2017): Every graph with no $K_{8}^{=}$minor is 8-colorable.

Main Results

THM (Rolek \& S. 2017): Every graph with no K_{8}^{-}minor is 9-colorable.

THM (Rolek \& S. 2017): Every graph with no $K_{8}^{=}$minor is 8-colorable.

Both proofs are short and computer-free.

The Extremal Function for K_{t} Minors

- THM(Mader 1968): For every integer $p=1,2, \ldots, 7$, a graph on $n \geq p$ vertices and at least $(p-2) n-\binom{p-1}{2}+1$ edges has a K_{p} minor.

The Extremal Function for K_{t} Minors

- THM(Mader 1968): For every integer $p=1,2, \ldots, 7$, a graph on $n \geq p$ vertices and at least $(p-2) n-\binom{p-1}{2}+1$ edges has a K_{p} minor.
- THM(Jørgensen 1994): Every graph on $n \geq 8$ vertices with at least $6 n-20$ edges either contains a K_{8} minor or is isomorphic to a ($K_{2,2,2,2,2}, 5$)-cockade.

The Extremal Function for K_{t} Minors

- THM(Mader 1968): For every integer $p=1,2, \ldots, 7$, a graph on $n \geq p$ vertices and at least $(p-2) n-\binom{p-1}{2}+1$ edges has a K_{p} minor.
- THM(Jørgensen 1994): Every graph on $n \geq 8$ vertices with at least $6 n-20$ edges either contains a K_{8} minor or is isomorphic to a ($K_{2,2,2,2,2}, 5$)-cockade.
- THM(S. \& Thomas 2006): Every graph on $n \geq 9$ vertices with at least $7 n-27$ edges either contains a K_{9} minor, or is isomorphic to $K_{2,2,2,3,3}$, or is isomorphic to a ($K_{1,2,2,2,2,2}, 6$)-cockade.

The Extremal Function for K_{t} Minors

- THM(Mader 1968): For every integer $p=1,2, \ldots, 7$, a graph on $n \geq p$ vertices and at least $(p-2) n-\binom{p-1}{2}+1$ edges has a K_{p} minor.
- THM(Jørgensen 1994): Every graph on $n \geq 8$ vertices with at least $6 n-20$ edges either contains a K_{8} minor or is isomorphic to a ($K_{2,2,2,2,2}, 5$)-cockade.
- THM(S. \& Thomas 2006): Every graph on $n \geq 9$ vertices with at least $7 n-27$ edges either contains a K_{9} minor, or is isomorphic to $K_{2,2,2,3,3}$, or is isomorphic to a ($K_{1,2,2,2,2,2}, 6$)-cockade.
- Seymour-Thomas Conjecture (2003):For every $p \geq 1$ there exists a constant $N=N(p)$ such that every ($p-2$)-connected graph on $n \geq N$ vertices and at least $(p-2) n-\binom{p-1}{2}+1$ edges has a K_{p} minor.

The Extremal Function for K_{t} Minors

- THM(Mader 1968): For every integer $p=1,2, \ldots, 7$, a graph on $n \geq p$ vertices and at least $(p-2) n-\binom{p-1}{2}+1$ edges has a K_{p} minor.
- THM(Jørgensen 1994): Every graph on $n \geq 8$ vertices with at least $6 n-20$ edges either contains a K_{8} minor or is isomorphic to a ($K_{2,2,2,2,2}, 5$)-cockade.
- THM(S. \& Thomas 2006): Every graph on $n \geq 9$ vertices with at least $7 n-27$ edges either contains a K_{9} minor, or is isomorphic to $K_{2,2,2,3,3}$, or is isomorphic to a ($K_{1,2,2,2,2,2}, 6$)-cockade.
- Seymour-Thomas Conjecture (2003):For every $p \geq 1$ there exists a constant $N=N(p)$ such that every ($p-2$)-connected graph on $n \geq N$ vertices and at least $(p-2) n-\binom{p-1}{2}+1$ edges has a K_{p} minor.

Remark: Seymour-Thomas Conjecture is open for $p \geq 10$.

The Extreme Functions for K_{8}^{-}and $K_{8}^{=}$Minors

- THM(S. 2005): Every graph on $n \geq 8$ vertices with at least $\frac{1}{2}(11 n-35)$ edges either has a K_{8}^{-}minor or is a ($K_{1,2,2,2,2}, K_{7}, 5$)-cockade.

The Extreme Functions for K_{8}^{-}and $K_{8}^{=}$Minors

- THM(S. 2005): Every graph on $n \geq 8$ vertices with at least $\frac{1}{2}(11 n-35)$ edges either has a K_{8}^{-}minor or is a ($K_{1,2,2,2,2}, K_{7}, 5$)-cockade.

This settles a conjecture of Jakobsen from 1983.

The Extreme Functions for K_{8}^{-}and $K_{8}^{=}$Minors

- THM(S. 2005): Every graph on $n \geq 8$ vertices with at least $\frac{1}{2}(11 n-35)$ edges either has a K_{8}^{-}minor or is a ($K_{1,2,2,2,2}, K_{7}, 5$)-cockade.

This settles a conjecture of Jakobsen from 1983.

- THM(Jakobsen 1972): Every graph on $n \geq 8$ vertices and at least $5 n-14$ edges either has a $K_{8}^{=}$minor or is a ($K_{7}, 4$)-cockade.

Special families of graphs

- THM (Reed \& Seymour 2004): HC is true for line graphs.

Special families of graphs

- THM (Reed \& Seymour 2004): HC is true for line graphs.
- THM (Chudnovsky \& Fradkin 2007): HC is true for quasi-line graphs.

Special families of graphs

- THM (Reed \& Seymour 2004): HC is true for line graphs.
- THM (Chudnovsky \& Fradkin 2007): HC is true for quasi-line graphs.
- THM (S. \& Brian Thomas 2017): Let G be a graph with $\alpha(G) \geq 3$. If G is $\left\{C_{4}, C_{5}, \ldots, C_{2 \alpha(G)-1}\right\}$-free, then $h(G) \geq \chi(G)$.

Special families of graphs

- THM (Reed \& Seymour 2004): HC is true for line graphs.
- THM (Chudnovsky \& Fradkin 2007): HC is true for quasi-line graphs.
- THM (S. \& Brian Thomas 2017): Let G be a graph with $\alpha(G) \geq 3$. If G is $\left\{C_{4}, C_{5}, \ldots, C_{2 \alpha(G)-1}\right\}$-free, then $h(G) \geq \chi(G)$.
- Our proof relies heavily on Strong Perfect Graph Theorem.

Special families of graphs

- THM (Reed \& Seymour 2004): HC is true for line graphs.
- THM (Chudnovsky \& Fradkin 2007): HC is true for quasi-line graphs.
- THM (S. \& Brian Thomas 2017): Let G be a graph with $\alpha(G) \geq 3$. If G is $\left\{C_{4}, C_{5}, \ldots, C_{2 \alpha(G)-1}\right\}$-free, then $h(G) \geq \chi(G)$.
- Our proof relies heavily on Strong Perfect Graph Theorem.
- LEM (Fox \& Wei 2017): Let G be a graph on n vertices with minimum degree δ and clique number ω. If $n \geq \omega+2(n-\delta-1)^{2}+2$, then $h(G)=\left\lfloor\frac{n+\omega}{2}\right\rfloor \geq \chi(G)$.

Special families of graphs

- THM (Reed \& Seymour 2004): HC is true for line graphs.
- THM (Chudnovsky \& Fradkin 2007): HC is true for quasi-line graphs.
- THM (S. \& Brian Thomas 2017): Let G be a graph with $\alpha(G) \geq 3$. If G is $\left\{C_{4}, C_{5}, \ldots, C_{2 \alpha(G)-1}\right\}$-free, then $h(G) \geq \chi(G)$.
- Our proof relies heavily on Strong Perfect Graph Theorem.
- LEM (Fox \& Wei 2017): Let G be a graph on n vertices with minimum degree δ and clique number ω. If $n \geq \omega+2(n-\delta-1)^{2}+2$, then $h(G)=\left\lfloor\frac{n+\omega}{2}\right\rfloor \geq \chi(G)$.

Squares of Split Graphs/Chordal Graphs

- THM (Chandran, Issac \& Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.

Squares of Split Graphs/Chordal Graphs

- THM (Chandran, Issac \& Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.
- For any G, there exists a split graph H such that $G \cong H^{2} \backslash K$, where K is a clique of H^{2} and K is complete to $V\left(H^{2}\right) \backslash K$.

Squares of Split Graphs/Chordal Graphs

- THM (Chandran, Issac \& Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.
- For any G, there exists a split graph H such that $G \cong H^{2} \backslash K$, where K is a clique of H^{2} and K is complete to $V\left(H^{2}\right) \backslash K$.
- Split graphs are chordal graphs.

Squares of Split Graphs/Chordal Graphs

- THM (Chandran, Issac \& Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.
- For any G, there exists a split graph H such that $G \cong H^{2} \backslash K$, where K is a clique of H^{2} and K is complete to $V\left(H^{2}\right) \backslash K$.
- Split graphs are chordal graphs.
- THM (Chandran, Issac \& Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of chordal graphs.

Squares of Split Graphs/Chordal Graphs

- THM (Chandran, Issac \& Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.
- For any G, there exists a split graph H such that $G \cong H^{2} \backslash K$, where K is a clique of H^{2} and K is complete to $V\left(H^{2}\right) \backslash K$.
- Split graphs are chordal graphs.
- THM (Chandran, Issac \& Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of chordal graphs.
- Chordal graphs are perfect graphs.

Squares of Split Graphs/Chordal Graphs

- THM (Chandran, Issac \& Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.
- For any G, there exists a split graph H such that $G \cong H^{2} \backslash K$, where K is a clique of H^{2} and K is complete to $V\left(H^{2}\right) \backslash K$.
- Split graphs are chordal graphs.
- THM (Chandran, Issac \& Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of chordal graphs.
- Chordal graphs are perfect graphs.
- THM (Agnarsson, Greenlaw \& Halldórsson 2000): Let G be a chordal graph and $k \geq 1$ be odd. Then G^{k} is chordal.

Squares of Split Graphs/Chordal Graphs

- THM (Chandran, Issac \& Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.
- For any G, there exists a split graph H such that $G \cong H^{2} \backslash K$, where K is a clique of H^{2} and K is complete to $V\left(H^{2}\right) \backslash K$.
- Split graphs are chordal graphs.
- THM (Chandran, Issac \& Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of chordal graphs.
- Chordal graphs are perfect graphs.
- THM (Agnarsson, Greenlaw \& Halldórsson 2000): Let G be a chordal graph and $k \geq 1$ be odd. Then G^{k} is chordal.
- G^{2} is not necessarily chordal.

Squares of Split Graphs/Chordal Graphs

- square of this chordal graph is not chordal.

THANK YOU!

