Coloring Graphs with Forbidden Minors

Zi-Xia Song (UCF)

University of Central Florida

August 21-25, 2017 Geometric and Structural Graph Theory Banff International Research Station

Joint work with Martin Rolek

向下 イヨト イヨト

▶ A graph G = (V, E) is *t*-colorable if \exists a mapping $c : V \rightarrow \{1, 2, ..., t\}$ such that for any $xy \in E$, $c(x) \neq c(y)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- ▶ A graph G = (V, E) is *t*-colorable if \exists a mapping $c : V \rightarrow \{1, 2, ..., t\}$ such that for any $xy \in E$, $c(x) \neq c(y)$.
- $\chi(G) := \min\{t : G \text{ is t-colorable}\}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- ▶ A graph G = (V, E) is *t*-colorable if \exists a mapping $c : V \rightarrow \{1, 2, ..., t\}$ such that for any $xy \in E$, $c(x) \neq c(y)$.
- $\chi(G) := \min\{t : G \text{ is t-colorable}\}$
- G is t-chromatic if $\chi(G) = t$.

伺下 イヨト イヨト

- ▶ A graph G = (V, E) is *t*-colorable if \exists a mapping $c : V \rightarrow \{1, 2, ..., t\}$ such that for any $xy \in E$, $c(x) \neq c(y)$.
- $\chi(G) := \min\{t : G \text{ is t-colorable}\}$
- G is t-chromatic if $\chi(G) = t$.
- $H \subseteq G := H$ is a subgraph of G.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ A graph G = (V, E) is *t*-colorable if \exists a mapping $c : V \rightarrow \{1, 2, ..., t\}$ such that for any $xy \in E$, $c(x) \neq c(y)$.
- $\chi(G) := \min\{t : G \text{ is t-colorable}\}$
- G is t-chromatic if $\chi(G) = t$.
- $H \subseteq G := H$ is a subgraph of G.
- G > H := H is a minor of G

・ 同 ト ・ ヨ ト ・ ヨ ト …

- ▶ A graph G = (V, E) is *t*-colorable if \exists a mapping $c : V \rightarrow \{1, 2, ..., t\}$ such that for any $xy \in E$, $c(x) \neq c(y)$.
- $\chi(G) := \min\{t : G \text{ is t-colorable}\}$
- G is t-chromatic if $\chi(G) = t$.
- $H \subseteq G := H$ is a subgraph of G.
- G > H := H is a minor of G
- $h(G) := \max\{t : G > K_t\}$ Hadwiger number of G

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ A graph G = (V, E) is *t*-colorable if \exists a mapping $c : V \rightarrow \{1, 2, ..., t\}$ such that for any $xy \in E$, $c(x) \neq c(y)$.
- $\chi(G) := \min\{t : G \text{ is t-colorable}\}$
- G is t-chromatic if $\chi(G) = t$.
- $H \subseteq G := H$ is a subgraph of G.
- G > H := H is a minor of G
- $h(G) := \max\{t : G > K_t\}$ Hadwiger number of G
- $\bullet \ \alpha(G) := \max\{t : K_t \subseteq \overline{G}\}$

independence number of G

イロト イポト イヨト イヨト

• If $K_t \subseteq G$, then $\chi(G) \ge t$.

æ

- If $K_t \subseteq G$, then $\chi(G) \ge t$.
- If $\chi(G) = t$, then $K_t \subseteq G$???

・ 回 と ・ ヨ と ・ ヨ と

- If $K_t \subseteq G$, then $\chi(G) \ge t$.
- If $\chi(G) = t$, then $K_t \subseteq G$??? NO!

・日本 ・ モン・ ・ モン

æ

- If $K_t \subseteq G$, then $\chi(G) \ge t$.
- If $\chi(G) = t$, then $K_t \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G) > k$ and g(G) > k.

・ 回 と ・ ヨ と ・ ヨ と

- If $K_t \subseteq G$, then $\chi(G) \ge t$.
- If $\chi(G) = t$, then $K_t \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G) > k$ and g(G) > k.

What causes the chromatic number so high?

(4月) (4日) (4日)

- If $K_t \subseteq G$, then $\chi(G) \ge t$.
- If $\chi(G) = t$, then $K_t \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G) > k$ and g(G) > k.

What causes the chromatic number so high?

• If
$$\chi(G) = t$$
, then $TK_t \subseteq G$???

(4月) (4日) (4日)

- If $K_t \subseteq G$, then $\chi(G) \ge t$.
- If $\chi(G) = t$, then $K_t \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G) > k$ and g(G) > k.

- What causes the chromatic number so high?
- If $\chi(G) = t$, then $TK_t \subseteq G$??? NO!

- 4 周 ト 4 日 ト 4 日 ト - 日

- If $K_t \subseteq G$, then $\chi(G) \ge t$.
- If $\chi(G) = t$, then $K_t \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G) > k$ and g(G) > k.

- What causes the chromatic number so high?
- ▶ If $\chi(G) = t$, then $TK_t \subseteq G$??? NO! Hajós Conjecture

- 4 周 ト 4 日 ト 4 日 ト - 日

- If $K_t \subseteq G$, then $\chi(G) \ge t$.
- If $\chi(G) = t$, then $K_t \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G) > k$ and g(G) > k.

- What causes the chromatic number so high?
- ▶ If $\chi(G) = t$, then $TK_t \subseteq G$??? NO! Hajós Conjecture
 - ► THM (He, Wang & Yu 2017+): every 5-connected non-planar graph contains a TK₅.

- If $K_t \subseteq G$, then $\chi(G) \ge t$.
- If $\chi(G) = t$, then $K_t \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G) > k$ and g(G) > k.

- What causes the chromatic number so high?
- ▶ If $\chi(G) = t$, then $TK_t \subseteq G$??? NO! Hajós Conjecture
 - ► THM (He, Wang & Yu 2017+): every 5-connected non-planar graph contains a TK₅.
 - ► This settles the Kelmans-Seymour conjecture from 1970+.

- If $K_t \subseteq G$, then $\chi(G) \ge t$.
- If $\chi(G) = t$, then $K_t \subseteq G$??? NO!

Erdős (1959): For any positive integer k, there exists a graph G with $\chi(G) > k$ and g(G) > k.

- What causes the chromatic number so high?
- ▶ If $\chi(G) = t$, then $TK_t \subseteq G$??? NO! Hajós Conjecture
 - ► THM (He, Wang & Yu 2017+): every 5-connected non-planar graph contains a TK₅.
 - ► This settles the Kelmans-Seymour conjecture from 1970+.
- If $\chi(G) = t$, then G contains a K_t minor ???

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable,

伺 と く き と く き と

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable, i.e., $h(G) \ge \chi(G)$ for all G.

伺 ト イヨト イヨト

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable, i.e., $h(G) \ge \chi(G)$ for all *G*.

"perhaps the most famous conjecture in GT" Seymour (2016)

伺 ト イヨト イヨト

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable, i.e., $h(G) \ge \chi(G)$ for all *G*.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- ▶ $t \le 3$, easy Dirac (1952); Hadwiger (1943)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable, i.e., $h(G) \ge \chi(G)$ for all *G*.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- *t* ≤ 3, easy Dirac (1952); Hadwiger (1943)
 no *K*₃ minor

・ 同 ト ・ ヨ ト ・ ヨ ト

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable, i.e., $h(G) \ge \chi(G)$ for all *G*.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- ► $t \le 3$, easy Dirac (1952); Hadwiger (1943)

no K_3 minor \implies acyclic

マボン イラン イラン・ラ

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable, i.e., $h(G) \ge \chi(G)$ for all *G*.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- ► $t \le 3$, easy Dirac (1952); Hadwiger (1943)

no K_3 minor \implies acyclic \implies bipartite

(4月) (4日) (4日) 日

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable, i.e., $h(G) \ge \chi(G)$ for all *G*.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy Dirac (1952); Hadwiger (1943)

no K_3 minor \implies acyclic \implies bipartite \implies 2-colorable

- 本部 とくき とくき とうき

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable, i.e., $h(G) \ge \chi(G)$ for all *G*.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- ► t ≤ 3, easy Dirac (1952); Hadwiger (1943)

no K_3 minor \implies acyclic \implies bipartite \implies 2-colorable

•
$$t \ge 4$$
, HC \Longrightarrow 4CT

- 本部 とくき とくき とうき

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable, i.e., $h(G) \ge \chi(G)$ for all *G*.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy Dirac (1952); Hadwiger (1943)

no K_3 minor \implies acyclic \implies bipartite \implies 2-colorable

•
$$t \ge 4$$
, HC \Longrightarrow 4CT

• t = 4, HC \iff 4CT Wagner (1937)

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable, i.e., $h(G) \ge \chi(G)$ for all *G*.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy Dirac (1952); Hadwiger (1943)

no K_3 minor \implies acyclic \implies bipartite \implies 2-colorable

•
$$t \ge 4$$
, HC \Longrightarrow 4CT

- ► t = 4, HC \iff 4CT Wagner (1937)
- ▶ t = 5, HC \iff 4CT Robertson, Seymour & Thomas (1993)

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable, i.e., $h(G) \ge \chi(G)$ for all *G*.

- "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy Dirac (1952); Hadwiger (1943)

no K_3 minor \implies acyclic \implies bipartite \implies 2-colorable

•
$$t \ge 4$$
, HC \Longrightarrow 4CT

- ► t = 4, HC \iff 4CT Wagner (1937)
- ▶ t = 5, HC \iff 4CT Robertson, Seymour & Thomas (1993)
- wide open for $t \ge 6$

Hadwiger's Conjecture (1943): For every $t \ge 0$, every graph with no K_{t+1} minor is *t*-colorable, i.e., $h(G) \ge \chi(G)$ for all *G*.

- ▶ "perhaps the most famous conjecture in GT" Seymour (2016)
- $t \leq 3$, easy Dirac (1952); Hadwiger (1943)

no K_3 minor \implies acyclic \implies bipartite \implies 2-colorable

•
$$t \ge 4$$
, HC \Longrightarrow 4CT

• t = 4, HC \iff 4CT Wagner (1937)

- ▶ t = 5, HC \iff 4CT Robertson, Seymour & Thomas (1993)
- wide open for $t \ge 6$
- ► Not even known yet whether every graph with no K₇ minor is 7-colorable.

• K_p^- : the graph obtained from K_p by deleting one edge

▲□ → ▲ 目 → ▲ 目 → ● ● ●

- K_p^- : the graph obtained from K_p by deleting one edge
- ► K⁼_p: the set of non-isomorphic graphs obtained from K_p by deleting two edges

- K_p^- : the graph obtained from K_p by deleting one edge
- ► K⁼_p: the set of non-isomorphic graphs obtained from K_p by deleting two edges
- G has a $K_p^=$ minor \iff G contains at least one of the two graphs in $K_p^=$ as a minor.

(本部)) (本語)) (本語)) (語)

- K_p^- : the graph obtained from K_p by deleting one edge
- ► K⁼_p: the set of non-isomorphic graphs obtained from K_p by deleting two edges
- G has a $K_p^=$ minor \iff G contains at least one of the two graphs in $K_p^=$ as a minor.
- G has no $K_p^=$ minor \iff G contains neither of the two graphs in $K_p^=$ as a minor

(本部) (本語) (本語) (語)
Partial results towards Hadwiger's Conjecture

프 🖌 🛪 프 🕨

Partial results towards Hadwiger's Conjecture

► *t* = 7:

- ► If $G \neq K_7^=$, then G is 6-colorable. Jakobsen (1971)
- If $G \not> K_7^-$, then G is 7-colorable.
- If $G \not> K_7$, then G is 9-colorable.

Jakobsen (1971) Jakobsen (1983) Mader (1968)

• If $G \not> K_7$, then G is 6-colorable or $G > K_{4,4}$.

Kawarabayashi & Toft (2005)

高 とう ヨン うまと

• If $G \not> K_7$, then G is 8-colorable. Albar & Gonçalves (2013+)

Partial results towards Hadwiger's Conjecture

► *t* = 7:

- If $G \not> K_7^=$, then G is 6-colorable. Jakobsen (1971)
- ► If $G \neq K_7^-$, then G is 7-colorable. Jakobsen (1983)
- If $G \not> K_7$, then G is 9-colorable.
- If $G \not> K_7$, then G is 6-colorable or $G > K_{4,4}$.
 - Kawarabayashi & Toft (2005)

▲圖▶ ▲屋▶ ▲屋▶

Mader (1968)

• If $G \not> K_7$, then G is 8-colorable. Albar & Gonçalves (2013+)

- If $G \neq K_8^=$, then G is 9-colorable.Jakobsen (1972)If $G \neq K_8^-$, then G is 10-colorable.S. (2005)If $G \neq K_8$, then G is 11-colorable.Jørgensen (1994)
- If $G \not> K_8$, then G is 10-colorable. Albar & Gonçalves (2013+)

▶ t = 7: • If $G \not> K_7^=$, then G is 6-colorable. Jakobsen (1971) • If $G \not> K_7^-$, then G is 7-colorable. Jakobsen (1983) • If $G \not> K_7$, then G is 9-colorable. Mader (1968) • If $G \not> K_7$, then G is 6-colorable or $G > K_{4,4}$. Kawarabayashi & Toft (2005) • If $G \not> K_7$, then G is 8-colorable. Albar & Gonçalves (2013+) t = 8: • If $G \not> K_8^=$, then G is 9-colorable. Jakobsen (1972) • If $G \not> K_8^-$, then G is 10-colorable. S. (2005) • If $G \not> K_8$, then G is 11-colorable. Jørgensen (1994) • If $G \not> K_8$, then G is 10-colorable. Albar & Gonçalves (2013+) t = 9: • If $G \not> K_9$, then G is 13-colorable. S. & Thomas (2006)

個 と く ヨ と く ヨ と …

æ

For a positive integer k, a graph G is k-contraction-critical if $\chi(G) = k$ but any proper minor of G is (k - 1)-colorable.

伺 とう ヨン うちょう

For a positive integer k, a graph G is k-contraction-critical if $\chi(G) = k$ but any proper minor of G is (k - 1)-colorable.

LEM (Dirac 1960): Every k-contraction-critical graph G satisfies the following:

向下 イヨト イヨト

For a positive integer k, a graph G is k-contraction-critical if $\chi(G) = k$ but any proper minor of G is (k - 1)-colorable.

LEM (Dirac 1960): Every *k*-contraction-critical graph *G* satisfies the following:

• for any $v \in V(G)$, $\alpha(G[N(v)]) \leq d_G(v) - k + 2$.

伺下 イヨト イヨト

For a positive integer k, a graph G is k-contraction-critical if $\chi(G) = k$ but any proper minor of G is (k - 1)-colorable.

LEM (Dirac 1960): Every *k*-contraction-critical graph *G* satisfies the following:

▶ for any $v \in V(G)$, $\alpha(G[N(v)]) \leq d_G(v) - k + 2$.

no separating set of G is a clique.

伺下 イヨト イヨト

For a positive integer k, a graph G is k-contraction-critical if $\chi(G) = k$ but any proper minor of G is (k - 1)-colorable.

LEM (Dirac 1960): Every k-contraction-critical graph G satisfies the following:

• for any $v \in V(G)$, $\alpha(G[N(v)]) \leq d_G(v) - k + 2$.

no separating set of G is a clique.

THM (Mader 1960): For $k \ge 7$, every k-contraction-critical graph is 7-connected.

・ 同 ト ・ ヨ ト ・ ヨ ト

For a positive integer k, a graph G is k-contraction-critical if $\chi(G) = k$ but any proper minor of G is (k - 1)-colorable.

LEM (Dirac 1960): Every *k*-contraction-critical graph *G* satisfies the following:

• for any $v \in V(G)$, $\alpha(G[N(v)]) \leq d_G(v) - k + 2$.

no separating set of G is a clique.

THM (Mader 1960): For $k \ge 7$, every k-contraction-critical graph is 7-connected.

THM(Mader 1968): For every integer p = 1, 2, ..., 7, a graph on $n \ge p$ vertices and at least $(p-2)n - {p-1 \choose 2} + 1$ edges has a K_p minor.

For a positive integer k, a graph G is k-contraction-critical if $\chi(G) = k$ but any proper minor of G is (k - 1)-colorable.

LEM (Dirac 1960): Every k-contraction-critical graph G satisfies the following:

• for any $v \in V(G)$, $\alpha(G[N(v)]) \leq d_G(v) - k + 2$.

no separating set of G is a clique.

THM (Mader 1960): For $k \ge 7$, every k-contraction-critical graph is 7-connected.

THM(Mader 1968): For every integer p = 1, 2, ..., 7, a graph on $n \ge p$ vertices and at least $(p-2)n - {p-1 \choose 2} + 1$ edges has a K_p minor. Mader's bound

THM (Fabila-Monroy & Wood 2013): Let G be a 4-connected graph and let $v_1, v_2, v_3, v_4 \in V(G)$ be any four distinct vertices. Then either G contains a K_4 -minor rooted at v_1, v_2, v_3, v_4 , or G is planar and v_1, v_2, v_3, v_4 are on a common face.

THM (Fabila-Monroy & Wood 2013): Let *G* be a 4-connected graph and let $v_1, v_2, v_3, v_4 \in V(G)$ be any four distinct vertices. Then either *G* contains a K_4 -minor rooted at v_1, v_2, v_3, v_4 , or *G* is planar and v_1, v_2, v_3, v_4 are on a common face.

THM (Kawarabayashi, Luo, Niu & Zhang 2005): Let G be a (k + 2)-connected graph, where $k \ge 5$ is an integer. If G contains three K_k 's, say L_1, L_2, L_3 , such that $|L_1 \cup L_2 \cup L_3| \ge 3(k - 1)$, then $G > K_{k+2}$.

伺 とう ヨン うちょう

THM (Fabila-Monroy & Wood 2013): Let G be a 4-connected graph and let $v_1, v_2, v_3, v_4 \in V(G)$ be any four distinct vertices. Then either G contains a K_4 -minor rooted at v_1, v_2, v_3, v_4 , or G is planar and v_1, v_2, v_3, v_4 are on a common face.

THM (Kawarabayashi, Luo, Niu & Zhang 2005): Let G be a (k + 2)-connected graph, where $k \ge 5$ is an integer. If G contains three K_k 's, say L_1, L_2, L_3 , such that $|L_1 \cup L_2 \cup L_3| \ge 3(k - 1)$, then $G > K_{k+2}$.

► k = 4, Robertson, Seymour & Thomas (1993)

・ 同 ト ・ ヨ ト ・ ヨ ト …

THM (Fabila-Monroy & Wood 2013): Let *G* be a 4-connected graph and let $v_1, v_2, v_3, v_4 \in V(G)$ be any four distinct vertices. Then either *G* contains a K_4 -minor rooted at v_1, v_2, v_3, v_4 , or *G* is planar and v_1, v_2, v_3, v_4 are on a common face.

THM (Kawarabayashi, Luo, Niu & Zhang 2005): Let G be a (k + 2)-connected graph, where $k \ge 5$ is an integer. If G contains three K_k 's, say L_1, L_2, L_3 , such that $|L_1 \cup L_2 \cup L_3| \ge 3(k - 1)$, then $G > K_{k+2}$.

k = 4, Robertson, Seymour & Thomas (1993)
k = 5, Kawarabayashi & Toft (2005)

(日本) (日本) (日本)

LEM (Rolek & S. 2015++): If $G \neq K_8$ is an 8-contraction-critical graph having two different K_5 's with exactly three vertices in common or three different K_5 's as depicted below, then $G > K_7$.

LEM (Rolek & S. 2015++): If $G \neq K_8$ is an 8-contraction-critical graph having two different K_5 's with exactly three vertices in common or three different K_5 's as depicted below, then $G > K_7$.

Applied rooted K₄-minor result to the case when two K₅'s have exactly three vertices in common.

For an integer $i \ge 0$, let n_i denotes the number of vertices of degree i in a graph G.

高 とう モン・ く ヨ と

For an integer $i \ge 0$, let n_i denotes the number of vertices of degree i in a graph G.

THM (Rolek & S. 2015++): If G is a 8-contraction-critical, K_7 -minor-free graph, then the following hold.

• $8 \le \delta(G) \le 9$ and $2n_8 + n_9 \ge 30$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

For an integer $i \ge 0$, let n_i denotes the number of vertices of degree i in a graph G.

THM (Rolek & S. 2015++): If G is a 8-contraction-critical, K_7 -minor-free graph, then the following hold.

- $8 \le \delta(G) \le 9$ and $2n_8 + n_9 \ge 30$.
- For any $v \in V(G)$ with $d_G(v) = 8$, G[N(v)] contains $2K_4$ as a subgraph.

・ 同 ト ・ ヨ ト ・ ヨ ト …

For an integer $i \ge 0$, let n_i denotes the number of vertices of degree i in a graph G.

THM (Rolek & S. 2015++): If G is a 8-contraction-critical, K_7 -minor-free graph, then the following hold.

- $8 \le \delta(G) \le 9$ and $2n_8 + n_9 \ge 30$.
- For any $v \in V(G)$ with $d_G(v) = 8$, G[N(v)] contains $2K_4$ as a subgraph.
- ▶ $n_8 \le 2$.

For an integer $i \ge 0$, let n_i denotes the number of vertices of degree i in a graph G.

THM (Rolek & S. 2015++): If G is a 8-contraction-critical, K_7 -minor-free graph, then the following hold.

- $8 \le \delta(G) \le 9$ and $2n_8 + n_9 \ge 30$.
- For any $v \in V(G)$ with $d_G(v) = 8$, G[N(v)] contains $2K_4$ as a subgraph.
- ▶ $n_8 \le 2$.
- For any v ∈ V(G) with d_G(v) = 9, either G[N(v)] contains K₄ as a subgraph or 0 ≤ δ(G[N(v)]) ≤ 4.

For an integer $i \ge 0$, let n_i denotes the number of vertices of degree i in a graph G.

THM (Rolek & S. 2015++): If G is a 8-contraction-critical, K_7 -minor-free graph, then the following hold.

- $8 \le \delta(G) \le 9$ and $2n_8 + n_9 \ge 30$.
- For any $v \in V(G)$ with $d_G(v) = 8$, G[N(v)] contains $2K_4$ as a subgraph.
- ▶ $n_8 \le 2$.
- For any v ∈ V(G) with d_G(v) = 9, either G[N(v)] contains K₄ as a subgraph or 0 ≤ δ(G[N(v)]) ≤ 4.
- ▶ We were unable to prove that *G* is 8-connected.

For an integer $i \ge 0$, let n_i denotes the number of vertices of degree i in a graph G.

THM (Rolek & S. 2015++): If G is a 8-contraction-critical, K_7 -minor-free graph, then the following hold.

- $8 \le \delta(G) \le 9$ and $2n_8 + n_9 \ge 30$.
- For any $v \in V(G)$ with $d_G(v) = 8$, G[N(v)] contains $2K_4$ as a subgraph.
- ▶ $n_8 \le 1$. (Thanks to **Robin Thomas**)
- For any v ∈ V(G) with d_G(v) = 9, either G[N(v)] contains K₄ as a subgraph or 0 ≤ δ(G[N(v)]) ≤ 4.
- ▶ We were unable to prove that *G* is 8-connected.

LEM (Rolek & S. 2015++): Let *H* be a graph with |H| = 8 and $\alpha(H) = 2$. Then *H* contains either K_4 or H_8 as a subgraph, where H_8 is depicted below.

LEM (Rolek & S. 2015++): Let *H* be a graph with |H| = 8 and $\alpha(H) = 2$. Then *H* contains either K_4 or H_8 as a subgraph, where H_8 is depicted below.

Zi-Xia Song (UCF) Coloring Graphs with Forbidden Minors

LEM (Rolek & S. 2015++): Let *H* be a graph with |H| = 9 and $\delta(H) \ge 5$. Then either $H > K_6$, or *H* is isomorphic to one of the 17 graphs. Moreover, if *H* is K_4 -free, then either $H > K_6$, or *H* is isomorphic to $\overline{K_3} + C_6$.

・ 同 ト ・ ヨ ト ・ ヨ ト

An edge *e* is a **missing edge** in *G* if $e \in E(\overline{G})$.

Zi-Xia Song (UCF) Coloring Graphs with Forbidden Minors

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

æ

An edge *e* is a **missing edge** in *G* if $e \in E(\overline{G})$.

LEM (Rolek & S. 2017): Let *G* be any *k*-contraction-critical graph. Let $x \in V(G)$ be a vertex of degree k + s with $\alpha(G[N(x)]) = s + 2$ and let $S \subset N(x)$ with |S| = s + 2 be any independent set, where $k \ge 4$ and $s \ge 0$ are integers. Let *M* be a set of missing edges of $G[N(x) \setminus S]$. Then there exists a collection $\{P_{uv} : uv \in M\}$ of paths in *G* such that for each $uv \in M$, P_{uv} has ends $\{u, v\}$ and all its internal vertices in $G \setminus N[x]$. Moreover, if vertices u, v, w, z with $uv, wz \in M$ are distinct, then the paths P_{uv} and P_{wz} are vertex-disjoint.

・ 同 ト ・ ヨ ト ・ ヨ ト

◆□→ ◆□→ ◆注→ ◆注→ □注□

◆□→ ◆□→ ◆注→ ◆注→ □注□

<ロ> (四) (四) (三) (三) (三)

◆□ > ◆□ > ◆臣 > ◆臣 > □ 臣 □

くしゃ (四)・(日)・(日)・(日)・

くしゃ (四)・(日)・(日)・(日)・

◆□ > ◆□ > ◆臣 > ◆臣 > □ 臣 □

・日・ ・ ヨ・ ・ ヨ・

æ

• every graph with no K_7 minor is 8-colorable;

・ 同 ト ・ ヨ ト ・ ヨ ト

• every graph with no K_7 minor is 8-colorable;

• every graph with no K_8 minor is 10-colorable; and

・ 同下 ・ ヨト ・ ヨト

- every graph with no K_7 minor is 8-colorable;
- every graph with no K_8 minor is 10-colorable; and
- every graph with no K_9 minor is 12-colorable.

・ 同 ト ・ ヨ ト ・ ヨ ト

- every graph with no K_7 minor is 8-colorable;
- every graph with no K_8 minor is 10-colorable; and
- every graph with no K_9 minor is 12-colorable.
- Our proofs for t = 7,8 are short and computer-free.

- 4 同 6 4 日 6 4 日 6

• True for $t \leq 9$ and **open** for $t \geq 10$.

• True for $t \leq 9$ and **open** for $t \geq 10$.

THM (Rolek & S. 2017): For any $t \ge 6$, if the above conjecture is true, then every graph with no K_t minor is (2t - 6)-colorable.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• True for $t \leq 9$ and **open** for $t \geq 10$.

THM (Rolek & S. 2017): For any $t \ge 6$, if the above conjecture is true, then every graph with no K_t minor is (2t - 6)-colorable.

Gives a new proof of our previous result.

・ 同 ト ・ ヨ ト ・ ヨ ト …

• True for $t \leq 9$ and **open** for $t \geq 10$.

THM (Rolek & S. 2017): For any $t \ge 6$, if the above conjecture is true, then every graph with no K_t minor is (2t - 6)-colorable.

- Gives a **new** proof of our previous result.
- ► Only requires (2t 6)-colorable instead of (t 1)-colorable in the above Conjecture.

소리가 소문가 소문가 소문가

Proof:

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof:

• Suppose $\chi(G) \ge 2t - 5$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Proof:

- Suppose *χ*(*G*) ≥ 2*t* − 5.
- $\delta(G) \leq 2t 5$ by the assumed truth of our conjecture.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof:

- Suppose *χ*(*G*) ≥ 2*t* − 5.
- $\delta(G) \leq 2t 5$ by the assumed truth of our conjecture.
- G is (2t-5)-contraction-critical and $\delta(G) = 2t-5$.

- 4 周 ト 4 日 ト 4 日 ト - 日

Proof:

- Suppose *χ*(*G*) ≥ 2*t* − 5.
- $\delta(G) \leq 2t 5$ by the assumed truth of our conjecture.
- G is (2t-5)-contraction-critical and $\delta(G) = 2t-5$.
- For any $x \in V(G)$ with $d_G(x) = 2t 5$, $\alpha(G[N(x)]) = 2$.

Proof:

- Suppose *χ*(*G*) ≥ 2*t* − 5.
- δ(G) ≤ 2t − 5 by the assumed truth of our conjecture.
- G is (2t-5)-contraction-critical and $\delta(G) = 2t-5$.
- For any $x \in V(G)$ with $d_G(x) = 2t 5$, $\alpha(G[N(x)]) = 2$.
- $\chi(G[N(x)]) \geq t-2.$

Proof:

- Suppose *χ*(*G*) ≥ 2*t* − 5.
- δ(G) ≤ 2t − 5 by the assumed truth of our conjecture.
- G is (2t-5)-contraction-critical and $\delta(G) = 2t-5$.
- For any $x \in V(G)$ with $d_G(x) = 2t 5$, $\alpha(G[N(x)]) = 2$.
- $\chi(G[N(x)]) \geq t-2.$
- $\omega(G[N(x)]) \leq t 3;$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Proof:

- Suppose χ(G) ≥ 2t − 5.
- δ(G) ≤ 2t − 5 by the assumed truth of our conjecture.
- G is (2t-5)-contraction-critical and $\delta(G) = 2t-5$.
- For any $x \in V(G)$ with $d_G(x) = 2t 5$, $\alpha(G[N(x)]) = 2$.

•
$$\chi(G[N(x)]) \geq t-2.$$

• $\omega(G[N(x)]) \leq t-3;$ $\delta(G[N(x)]) \geq t-2.$

 $d_{N(x)}(y) = t - 3$

æ

$$d_{N(x)}(y)=t-3\geq 3$$

• $t \ge 6$ is only required here.

æ

 $d_{N(x)}(y)=t-3\geq 3$

- y has t 3 neighbors and t 3 non-neighbors.
- Contracting the blue seagull into a single vertex, all purple paths onto z yield a K_{t-1} minor in N(x).

Case 1: $\chi(G[N(x)]) \ge t$

where V_1, V_2, \ldots, V_t are the color classes of G[N(x)].

Case 1: $\chi(G[N(x)]) \ge t$

where V_1, V_2, \ldots, V_t are the color classes of G[N(x)].

Case 1: $\chi(G[N(x)]) \ge t$

where V_1, V_2, \ldots, V_t are the color classes of G[N(x)].

exact one singleton.

≣ >

Proof Sketch

Case 2: $\chi(G[N(x)]) = t - 2$

- a must be complete to some V_i , say V_2 .
- ▶ *b*, *c* must have a common neighbor in some V_j , say $e \in V_3$.
- We may assume that $db \in E(G)$.

- ► *P*: *ad*-path; *Q*: *ed*-path.
- Contracting P a and Q e onto d.
- Contracting the edge *ce*.

exact three singletons.

- Each vertex in $V_1 \cup V_2 \cup V_3$ is adjacent to either *a* or *b*.
- Assume *a* has more neighbors in $V_1 \cup V_2 \cup V_3$ than *b*.

• *a* is complete to $V_1 \cup V_2 \cup V_3$.

< ≣⇒

A⊒ ▶ ∢ ∃

æ

• a is complete to $V_1 \cup V_2 \cup V_3$.

→ 注→ 注

• *a* is complete to $V_1 \cup V_2$ and *b* is complete to V_3 .

A ■

Proof Sketch

Case 3: $\chi(G[N(x)]) = t - 1$

- a is adjacent to exactly two of the three singletons.
- aV_3 -path is disjoint from bV_1 and bV_2 -path.
- *ab*-path may intersect with each of aV_3 -, bV_1 and bV_2 -path.

Proof Sketch

Case 3: $\chi(G[N(x)]) = t - 1$

- ► d: first vertex on the *ab*-path (when read from *a* to *b*) which is also on the *bV*₁ or *bV*₂-path.
- ► c: first vertex on the aV₃-path (when read from V₃ to a) which is also on the da-subpath of the ba-path.
- $d \neq a$, $c \neq b$, cd-subpath is disjoint from cV_3 -subpath.

THM (Rolek & S. 2017): Every graph with no $\frac{K_8}{8}$ minor is 9-colorable.

・回 ・ ・ ヨ ・ ・ ヨ ・

æ
THM (Rolek & S. 2017): Every graph with no K_8^- minor is 9-colorable.

THM (Rolek & S. 2017): Every graph with no $K_8^{=}$ minor is 8-colorable.

THM (Rolek & S. 2017): Every graph with no $\frac{K_8}{8}$ minor is 9-colorable.

THM (Rolek & S. 2017): Every graph with no $K_8^{=}$ minor is 8-colorable.

Both proofs are short and computer-free.

The Extremal Function for K_t Minors

► THM(Mader 1968): For every integer p = 1, 2, ..., 7, a graph on n ≥ p vertices and at least (p − 2)n − (^{p−1}₂) + 1 edges has a K_p minor.

The Extremal Function for K_t Minors

- ▶ **THM**(Mader 1968): For every integer p = 1, 2, ..., 7, a graph on $n \ge p$ vertices and at least $(p-2)n \binom{p-1}{2} + 1$ edges has a K_p minor.
- ► THM(Jørgensen 1994): Every graph on n ≥ 8 vertices with at least 6n - 20 edges either contains a K₈ minor or is isomorphic to a (K_{2,2,2,2}, 5)-cockade.

- ► THM(Mader 1968): For every integer p = 1, 2, ..., 7, a graph on n ≥ p vertices and at least (p − 2)n − (^{p−1}₂) + 1 edges has a K_p minor.
- ► THM(Jørgensen 1994): Every graph on n ≥ 8 vertices with at least 6n - 20 edges either contains a K₈ minor or is isomorphic to a (K_{2,2,2,2}, 5)-cockade.
- ► THM(S. & Thomas 2006): Every graph on n ≥ 9 vertices with at least 7n - 27 edges either contains a K₉ minor, or is isomorphic to K_{2,2,2,3,3}, or is isomorphic to a (K_{1,2,2,2,2,2}, 6)-cockade.

The Extremal Function for K_t Minors

- ► THM(Mader 1968): For every integer p = 1, 2, ..., 7, a graph on n ≥ p vertices and at least (p - 2)n - (^{p-1}₂) + 1 edges has a K_p minor.
- ▶ **THM**(Jørgensen 1994): Every graph on $n \ge 8$ vertices with at least 6n 20 edges either contains a K_8 minor or is isomorphic to a $(K_{2,2,2,2,2}, 5)$ -cockade.
- ► THM(S. & Thomas 2006): Every graph on n ≥ 9 vertices with at least 7n 27 edges either contains a K₉ minor, or is isomorphic to K_{2,2,2,3,3}, or is isomorphic to a (K_{1,2,2,2,2,2},6)-cockade.
- ▶ Seymour-Thomas Conjecture (2003):For every $p \ge 1$ there exists a constant N = N(p) such that every (p 2)-connected graph on $n \ge N$ vertices and at least $(p 2)n {p-1 \choose 2} + 1$ edges has a K_p minor.

・ロト ・回ト ・ヨト ・ ヨト

The Extremal Function for K_t Minors

- ► THM(Mader 1968): For every integer p = 1, 2, ..., 7, a graph on n ≥ p vertices and at least (p - 2)n - (^{p-1}₂) + 1 edges has a K_p minor.
- ▶ **THM**(Jørgensen 1994): Every graph on $n \ge 8$ vertices with at least 6n 20 edges either contains a K_8 minor or is isomorphic to a $(K_{2,2,2,2,2}, 5)$ -cockade.
- ► THM(S. & Thomas 2006): Every graph on n ≥ 9 vertices with at least 7n 27 edges either contains a K₉ minor, or is isomorphic to K_{2,2,2,3,3}, or is isomorphic to a (K_{1,2,2,2,2,2}, 6)-cockade.
- ▶ Seymour-Thomas Conjecture (2003):For every $p \ge 1$ there exists a constant N = N(p) such that every (p 2)-connected graph on $n \ge N$ vertices and at least $(p 2)n {p-1 \choose 2} + 1$ edges has a K_p minor.

Remark: Seymour-Thomas Conjecture is open for $p \ge 10$.

▶ **THM**(S. 2005): Every graph on $n \ge 8$ vertices with at least $\frac{1}{2}(11n - 35)$ edges either has a K_8^- minor or is a $(K_{1,2,2,2,2}, K_7, 5)$ -cockade.

回 とう ほう うちょう

▶ **THM**(S. 2005): Every graph on $n \ge 8$ vertices with at least $\frac{1}{2}(11n - 35)$ edges either has a K_8^- minor or is a $(K_{1,2,2,2,2}, K_7, 5)$ -cockade.

This settles a conjecture of Jakobsen from 1983.

▶ **THM**(S. 2005): Every graph on $n \ge 8$ vertices with at least $\frac{1}{2}(11n - 35)$ edges either has a K_8^- minor or is a $(K_{1,2,2,2,2}, K_7, 5)$ -cockade.

This settles a conjecture of Jakobsen from 1983.

► THM(Jakobsen 1972): Every graph on n ≥ 8 vertices and at least 5n - 14 edges either has a K₈⁼ minor or is a (K₇, 4)-cockade.

THM (Reed & Seymour 2004): HC is true for line graphs.

白 ト く ヨ ト く ヨ ト

- **THM** (Reed & Seymour 2004): HC is true for line graphs.
- THM (Chudnovsky & Fradkin 2007): HC is true for quasi-line graphs.

- **THM** (Reed & Seymour 2004): HC is true for line graphs.
- THM (Chudnovsky & Fradkin 2007): HC is true for quasi-line graphs.
- ▶ **THM** (S. & Brian Thomas 2017): Let G be a graph with $\alpha(G) \ge 3$. If G is $\{C_4, C_5, \ldots, C_{2\alpha(G)-1}\}$ -free, then $h(G) \ge \chi(G)$.

- **THM** (Reed & Seymour 2004): HC is true for line graphs.
- THM (Chudnovsky & Fradkin 2007): HC is true for quasi-line graphs.
- ▶ **THM** (S. & Brian Thomas 2017): Let G be a graph with $\alpha(G) \ge 3$. If G is $\{C_4, C_5, \ldots, C_{2\alpha(G)-1}\}$ -free, then $h(G) \ge \chi(G)$.
 - ► Our proof relies heavily on Strong Perfect Graph Theorem.

- **THM** (Reed & Seymour 2004): HC is true for line graphs.
- THM (Chudnovsky & Fradkin 2007): HC is true for quasi-line graphs.
- ▶ **THM** (S. & Brian Thomas 2017): Let G be a graph with $\alpha(G) \ge 3$. If G is $\{C_4, C_5, \ldots, C_{2\alpha(G)-1}\}$ -free, then $h(G) \ge \chi(G)$.
 - ► Our proof relies heavily on Strong Perfect Graph Theorem.
- LEM (Fox & Wei 2017): Let G be a graph on n vertices with minimum degree δ and clique number ω. If n ≥ ω + 2(n − δ − 1)² + 2, then h(G) = L^{n+ω}/₂ ≥ χ(G).

・同下 ・ヨト ・ヨト

- **THM** (Reed & Seymour 2004): HC is true for line graphs.
- THM (Chudnovsky & Fradkin 2007): HC is true for quasi-line graphs.
- ▶ **THM** (S. & Brian Thomas 2017): Let G be a graph with $\alpha(G) \ge 3$. If G is $\{C_4, C_5, \ldots, C_{2\alpha(G)-1}\}$ -free, then $h(G) \ge \chi(G)$.
 - ► Our proof relies heavily on Strong Perfect Graph Theorem.
- LEM (Fox & Wei 2017): Let G be a graph on n vertices with minimum degree δ and clique number ω. If n ≥ ω + 2(n − δ − 1)² + 2, then h(G) = L^{n+ω}/₂ ≥ χ(G).

・同下 ・ヨト ・ヨト

THM (Chandran, Issac & Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.

- THM (Chandran, Issac & Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.
 - For any G, there exists a split graph H such that G ≅ H² \ K, where K is a clique of H² and K is complete to V(H²) \ K.

- THM (Chandran, Issac & Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.
 - For any G, there exists a split graph H such that G ≅ H² \ K, where K is a clique of H² and K is complete to V(H²) \ K.
 - Split graphs are chordal graphs.

- THM (Chandran, Issac & Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.
 - For any G, there exists a split graph H such that G ≅ H² \ K, where K is a clique of H² and K is complete to V(H²) \ K.
 - Split graphs are chordal graphs.
- THM (Chandran, Issac & Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of chordal graphs.

(4月) イヨト イヨト

- THM (Chandran, Issac & Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.
 - For any G, there exists a split graph H such that G ≅ H² \ K, where K is a clique of H² and K is complete to V(H²) \ K.
 - Split graphs are chordal graphs.
- THM (Chandran, Issac & Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of chordal graphs.
 - Chordal graphs are perfect graphs.

- 4 同 6 4 日 6 4 日 6

- THM (Chandran, Issac & Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.
 - For any G, there exists a split graph H such that G ≅ H² \ K, where K is a clique of H² and K is complete to V(H²) \ K.
 - Split graphs are chordal graphs.
- THM (Chandran, Issac & Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of chordal graphs.
 - Chordal graphs are perfect graphs.
- ► THM (Agnarsson, Greenlaw & Halldórsson 2000): Let G be a chordal graph and k ≥ 1 be odd. Then G^k is chordal.

イロト イポト イヨト イヨト

- THM (Chandran, Issac & Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of split graphs.
 - For any G, there exists a split graph H such that G ≅ H² \ K, where K is a clique of H² and K is complete to V(H²) \ K.
 - Split graphs are chordal graphs.
- THM (Chandran, Issac & Zhou 2017+): HC is true for all graphs if and only if HC is true for squares of chordal graphs.
 - Chordal graphs are perfect graphs.
- ► THM (Agnarsson, Greenlaw & Halldórsson 2000): Let G be a chordal graph and k ≥ 1 be odd. Then G^k is chordal.
 - G^2 is not necessarily chordal.

square of this chordal graph is not chordal.

THANK YOU!

Zi-Xia Song (UCF) Coloring Graphs with Forbidden Minors

・ 回 と ・ ヨ と ・ モ と …

æ