Classes of graphs with strongly sublinear separators

Z. Dvořák

CSI, Charles University, Prague

Banff'17

Z. Dvořák Classes of graphs with strongly sublinear separators

 $X \subseteq V(H)$ is a <u>balanced separator</u> if each component of H - X has at most |V(H)|/2 vertices.

Definition

Class G has <u>*f*-separators</u> if for all $G \in G$, each subgraph *H* of *G* has a balanced separator of size at most f(|V(H)|).

<u>Strongly sublinear separators</u>: $f(n) = O(n^{1-\varepsilon})$ for some $\varepsilon > 0$.

- bounded treewidth $\Leftrightarrow O(1)$ -separators.
- planar (or in a fixed surface) $\Rightarrow O(\sqrt{n})$ -separators.
- proper minor-closed $\Rightarrow O(\sqrt{n})$ -separators.
- embedded in \mathbf{R}^d with bounded distortion $\Rightarrow O(n^{1-1/d})$ -separators.

An <u>*r*-shallow minor</u> of G is obtained from a subgraph of G by contracting vertex-disjoint subgraphs of radius at most r.

Definition

 $\nabla_r(G) = \max\{2|E(H)|/|V(H)| : H \text{ is an } r\text{-shallow minor of } G\}$ $\omega_r(G) = \max\{\omega(H) : H \text{ is an } r\text{-shallow minor of } G\}$

 $abla_0(G) =$ maximum average degree, $\omega_0(G) = \omega(G)$, $abla_r(G) \ge \omega_r(G) - 1$

$$abla_r(\mathcal{G}) = \sup\{
abla_r(\mathcal{G}) : \mathcal{G} \in \mathcal{G}\}\$$
 $\omega_r(\mathcal{G}) = \sup\{\omega_r(\mathcal{G}) : \mathcal{G} \in \mathcal{G}\}$

(∀r ≥ 0) ∇_r(G) finite: bounded expansion
(∀r ≥ 0) ω_r(G) finite: nowhere-dense

For a class G, TFAE:

- \mathcal{G} has strongly sublinear separators
- 2 $(\forall r \geq 0) \nabla_r(\mathcal{G}) \leq \operatorname{poly}(r)$

$$(\forall r \geq 0) \, \omega_r(\mathcal{G}) \leq \mathsf{poly}(r)$$

- $\mathbf{0} \Rightarrow \mathbf{0}$: D. and Norin; Esperet and Raymond
- $\mathbf{2} \Rightarrow \mathbf{3}$: trivial
- $\mathbf{3} \Rightarrow \mathbf{0}$: Plotkin, Rao, and Smith

Theorem (Plotkin, Rao, and Smith)

For every a > 0 and an *n*-vertex graph *G*, there exist disjoint $X, M \subseteq V(G)$ such that

- $X \cup M$ is a balanced separator
- for r = O(alog n), G[M] contains an r-shallow minor of K_b for some b ≤ ω_r(G) and |M| = O(abω_r(G) log n)

|X| ≤ n/a

If $\omega_r(G) = O(r^c)$ for some $c \ge 0$:

- $b = O(a^c \text{polylog}(n))$ and $|M| = O(a^{2c+1} \text{polylog}(n))$
- setting $a = \Theta(n^{1/(2c+2)})$, we have $|X \cup M| = O(n^{1-1/(2c+2)} \operatorname{polylog}(n))$

Question

Let \mathcal{G} have strongly sublinear separators, and for $G \in \mathcal{G}$, let $w : V(G) \to \mathbf{R}^+$ be an assignment of costs to vertices. Does there always exist a balanced separator X of small cost (e.g., $w(X)/w(V(G)) \leq \varepsilon$)?

No: $K_{1,n}$ with w(v) = 1 for the central vertex v and w(x) = 1/n for each ray x.

Theorem (D.)

For every a > 0, an n-vertex graph G, and assignment $w : V(G) \rightarrow \mathbf{R}^+$ of costs, there exist disjoint $X, M \subseteq V(G)$ such that

- $X \cup M$ is a balanced separator
- for O(alog n), G[M] contains an r-shallow minor of K_b for some b ≤ ω_r(G) and |M| = O(abω_r(G) log n)
- $w(X) \leq w(V(G))/a$

If $\omega_r(G) \leq \text{poly}(r)$, then $|M| \leq \text{poly}(a)\text{polylog}(n)$.

Small treewidth

Letting $a = \varepsilon / \log n$ and iterating:

Corollary

Let \mathcal{G} be a class with strongly sublinear separators, and let $w : V(G) \rightarrow \mathbf{R}^+$ be an assignment of costs to an n-vertex graph $G \in \mathcal{G}$. For every $\varepsilon > 0$, there exists $X \subseteq V(G)$ such that

 $w(X)/w(V(G)) \leq \varepsilon$

and

$$tw(G-X) \leq poly(1/\varepsilon)polylog(n).$$

Dual formulation

Corollary

Let \mathcal{G} be a class with strongly sublinear separators. For every $\varepsilon > 0$ and an n-vertex graph $G \in \mathcal{G}$, there exists a probability distribution on

 $\{X \subseteq V(G) : tw(G - X) \leq poly(1/\varepsilon)polylog(n)\}$

with support of size at most n + 1 such that

$$Pr[v \in X] \leq \varepsilon$$
 for all $v \in V(G)$.

Observation

Such probability distributions for $\varepsilon = 1, 1/2, 1/3, ..., 1/n$ certify that for some $\delta > 0$, all subgraphs with $k \ge polylog(n)$ vertices have balanced separators of size at most $O(k^{1-\delta})$.

Class G is <u>fractionally tw-fragile</u> if for some function f, every $\varepsilon > 0$, and every $G \in G$, there exists a probability distribution on

$$\{X \subseteq V(G) : \mathsf{tw}(G - X) \leq f(1/\varepsilon)\}$$

such that

$$\Pr[v \in X] \le \varepsilon$$

for all $v \in V(G)$.

Strongly fractionally tw-fragile when *f* is polynomial.

- Strongly fractionally tw-fragile ⇒ strongly sublinear separators.
- Forbidden minor ⇒ strongly (fractionally) tw-fragile (DeVos, Ding, Oporowski, Sanders, Reed, Seymour, and Vertigan)
- Embedded in R^d with bounded distortion ⇒ strongly fractionally tw-fragile

Theorem (D.)

Strongly sublinear separators + bounded maximum degree \Rightarrow fractionally tw-fragile (even with tw replaced by component size).

Conjecture

Strongly sublinear separators \Rightarrow strongly fractionally tw-fragile.

Observation

 \mathcal{G} fractionally tw-fragile $\Leftrightarrow \chi^{f}_{tw}(\mathcal{G}) = 1$.

Questions?