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Designs and hypergraph decompositions
r -graph = r -uniform hypergraph

Definition
An F -decomposition of an r -graph G is a set of edge-disjoint
copies of F covering all edges of G
(also called an (n,q, r)-Steiner system if G = K (r)

n and F = K (r)
q ).

(7,3,2)-Steiner system = triangle decomposition of K (2)
7

A set of distinct copies of K (r)
q in G such that every edge of G is

covered exactly λ times is a (q, r ,λ)-design of G
(also called an (n,q, r ,λ)-design if G = K (r)

n ).
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It’s the year 1853...

Jakob Steiner

For which n does
a triple system of
order n exist?

6 years earlier...

Theorem (Kirkman, 1847)
A triple system of order n exists if and only if n ≡ 1,3 mod 6.
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Thomas Kirkman

Arrh! It should read Kirkman
system.

Wesley Woolhouse Julius Plücker

EXCUSE ME!
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Divisibility conditions

Question
When does G have an F -decomposition?

If G has a triangle decomposition, then
(a) the number of edges of G is divisible by 3,
(b) every vertex has even degree.
Call G triangle divisible if (a) and (b) are satisfied.

Theorem (Kirkman 1847)
A Steiner triple system of order n (i.e. a triangle decomposition of
Kn) exists if and only if n ≡ 1,3 mod 6, i.e. if and only if Kn is
triangle-divisible.

Divisibility conditions can be generalised for arbitrary q, r ,λ, in
which case we say that G is (q, r ,λ)-divisible
(or K (r)

q -divisible if λ= 1).
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Previous results for graphs

Theorem (Kirkman 1847)
If Kn is triangle-divisible, then there exists a Steiner triple system,
i.e. a triangle decomposition of Kn.

Theorem (Wilson 1975)
For n large, every F -divisible Kn has an F -decomposition.
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Previous results for hypergraphs

(n,q, r ,λ)-design = set of distinct copies of K (r)
q in K (r)

n such that
every edge of K (r)

n is covered exactly λ times

Theorem (Teirlinck 1987)
For every r , there exist infinitely many nontrivial
(n, r + 1, r ,λ)-designs, where λ= (r + 1)!r+1.

Theorem (Kuperberg, Lovett and Peled 2013+)
There exists an absolute constant C such that whenever q ≥ Cr
there are infinitely many nontrivial (n,q, r ,λ)-designs (for some
(large) λ).

Question: What about decompositions, i.e. case λ= 1?
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The Rödl nibble

Relaxation: aim for an ‘approximate decomposition’
(i.e. an almost perfect packing of edge disjoint K (r)

q )

Conjecture (Erdős and Hanani, 1963)

There exists a K (r)
q -packing in K (r)

n covering all but o(nr ) of the
edges of K (r)

n (as n→∞).

Theorem (Rödl, 1985)
The conjecture is true.

Proof: ‘Rödl nibble’ or ‘semirandom method’
(also very important ingredient in our proof)
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Previous results

Theorem (Keevash 2014+)
For any fixed q, r ,λ, there exist (n,q, r ,λ)-designs.
More precisely, if n� q,λ and K (r)

n is (q, r ,λ)-divisible, then there
exists an (n,q, r ,λ)-design.

can actually replace K (r)
n by any dense quasirandom r -graph

proof is based on algebraic and probabilistic arguments.
We generalize this beyond the quasi-random setting,
using combinatorial and probabilistic arguments.
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Minimum degree version

from now on restrict to case λ= 1, results also extend to λ > 1
δr−1(G)= minimum degree of an (r −1)-tuple of vertices

Theorem (Glock, Kühn, Lo, Osthus 2016+)
For all q > r ≥ 2, there exists an n0 ∈ N such that the following
holds for all n ≥ n0. Let

c�
q,r := r !

3 ·14r q2r .

If G is an n-vertex r -graph with δr−1(G)≥ (1− c�
q,r )n,

then G has a K (r)
q -decomposition whenever it is K (r)

q -divisible.
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The decomposition threshold

Previous result leads to notion of decomposition threshold δq,r :

Definition
Let δq,r be the smallest δ ∈ [0,1] satisfying the following:
for all large enough n, every K (r)

q -divisible r -graph G on n vertices
with δ(G)≥ (δ+ o(1))n has a K (r)

q -decomposition.

Keevash ⇒ δq,r < 1
GKLO ⇒ δq,r ≤ 1− c�

q,r ≈ 1−q−2r .
Lower bound construction:
δq,r ≥ 1− cr q−r+1 log q ≈ 1−q−r+1.

graph case r = 2 has received much attention – see later
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Main result: supercomplexes
Previous result follows from our main result on designs in
‘supercomplexes’.
Theorem (Glock, Kühn, Lo, Osthus 2016+)
If n� q,λ and G is a (q, r ,λ)-divisible supercomplex on n vertices,
then G has a (q, r ,λ)-design.
(+ generalisation to dense quasirandom r-graphs)

The conditions of being a supercomplex depend mainly on the
distribution of q-cliques, which should be ‘random-like’.
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then G has a (q, r ,λ)-design.
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The conditions of being a supercomplex depend mainly on the
distribution of q-cliques, which should be ‘random-like’.

Examples of supercomplexes
•complete r -graphs
•quasirandom r -graphs, in particular ‘typical’ r -graphs
•k-partite graphs where k ≥ q + 6
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Existence of F -designs for arbitrary F

so far: considered designs/decompositions into cliques
What about decompositions into arbitrary hypergraphs F ?
F -decomposition= decomposition of edge set of G into copies of F

Theorem (Glock, Kühn, Lo, Osthus 2017+)

Suppose F is an r-graph and suppose that K (r)
n is F -divisible,

where n� |F |. Then K (r)
n has an F -decomposition. (+

generalisation to dense quasirandom r-graphs)

answers question of Keevash
graph case r = 2 is due to Wilson
can replace K (r)

n by any dense quasirandom r -graph G
can prove design version with λ > 1
effective minimum degree version if F is ‘weakly regular’
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Application: Graph decompositions and embeddings

Special case:

Theorem (Glock, Kühn, Lo, Osthus 2017+)
Suppose G is a large quasi-random graph and F is fixed with
(i) e(F ) divides e(G);
(ii) hcf{degrees of F} divides hcf{degrees of G}.
Then G has an F -decomposition.

Theorem (Archdeacon)
If graph G has a decomposition into K4’s, K5’s and K6’s, then G
has a self-dual embedding.

Corollary (Glock, Kühn, Lo, Osthus 2017+)
Almost every graph has a self-dual embedding.
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Proof sketch: Absorption

Suppose we seek a K (r)
q -decomposition of an r -graph G

iterative absorption approach
Split up the absorbing process into many steps which gradually
make leftover smaller and smaller.

⇒ final leftover L has bounded size and lies within prescribed set X
⇒ only boundedly many possibilities H1, . . . ,Hs for leftover L

⇒ suffices to find an ‘exclusive absorber’ Ai for each Hi , i.e.
• Ai ∪Hi has a K (r)

q -decomposition
• Ai has a K (r)

q -decomposition
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Absorbers via Transformers

Recall:
An exclusive absorber A for a potential leftover graph H satisfies
•A∪H has a K (r)

q -decomposition
•A has a K (r)

q -decomposition
We construct exclusive absorbers out of ‘transformers’.
Ignore divisibility.

Definition
An r -graph T is an (H1,H2)-transformer if both H1∪T and
T ∪H2 have K (r)

q -decompositions.

Aim: transform leftover H1 step by step into r -graph which is
trivially decomposable
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The exclusive absorber: general idea

General Idea:
construct absorber as concatenation of transformers
show that each H can be transformed into ‘canonical graph’
C which only depends on e(H)
by transitivity this implies that each H can be transformed
into a disjoint union J of K (r)

q , which is trivially decomposable

H

↔

C

3k ↔ J
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Open question: the decomposition threshold for graphs

Conjecture (Nash-Williams 1970)
Every large K3-divisible graph G on n vertices with δ(G)≥ 3n/4
has a K3-decomposition.

Extremal example: blow up each vertex of C4 to a Km (m odd
and divisible by 3).

Each triangle has at least one edge in one of the four cliques but
less than a third of the edges lie inside the cliques.
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Open question: the decomposition threshold for graphs

Conjecture (Nash-Williams 1970)
Every large K3-divisible graph G on n vertices with δ(G)≥ 3n/4
has a K3-decomposition.

true if δ(G)≥ (0.9 + o(1))n
(Barber, Kühn, Lo, Osthus & Dross)
showing that 3n

4 guarantees ‘fractional decomposition’ or
approx. decomposition would suffice
conjectured threshold for Kq-decompositions: qn

q+1 ,
partial results by Barber, Glock, Kühn, Lo, Montgomery,
Osthus
similar questions in partite setting, partial results by BKLMOT
(applications to completions of partially filled latin squares)
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