Designs and Decompositions

Deryk Osthus

joint work with Stefan Glock, Daniela Kühn and Allan Lo

University of Birmingham

August 2017

Designs and hypergraph decompositions

*r***-graph** = *r*-uniform hypergraph

Definition

An *F*-decomposition of an *r*-graph *G* is a set of edge-disjoint copies of *F* covering all edges of *G* (also called an (n,q,r)-Steiner system if $G = K_n^{(r)}$ and $F = K_q^{(r)}$).

(7,3,2)-Steiner system = triangle decomposition of $K_7^{(2)}$

Designs and hypergraph decompositions

*r***-graph** = *r*-uniform hypergraph

Definition

An *F*-decomposition of an *r*-graph *G* is a set of edge-disjoint copies of *F* covering all edges of *G* (also called an (n,q,r)-Steiner system if $G = K_n^{(r)}$ and $F = K_q^{(r)}$).

(7,3,2)-Steiner system = triangle decomposition of $K_7^{(2)}$

A set of distinct copies of $\mathcal{K}_q^{(r)}$ in G such that every edge of G is covered exactly λ times is a (q, r, λ) -design of G (also called an (n, q, r, λ) -design if $G = \mathcal{K}_n^{(r)}$).

It's the year 1853...

Jakob Steiner

It's the year 1853...

Jakob Steiner

6 years earlier...

Theorem (Kirkman, 1847)

A triple system of order n exists if and only if $n \equiv 1,3 \mod 6$.

Thomas Kirkman

・ロト ・ 同ト ・ ヨト ・

포 🛌 포

Divisibility conditions

Question

When does G have an F-decomposition?

If G has a triangle decomposition, then

- (a) the number of edges of G is divisible by 3,
- (b) every vertex has even degree.

Call G triangle divisible if (a) and (b) are satisfied.

Divisibility conditions

Question

When does G have an F-decomposition?

If G has a triangle decomposition, then

- (a) the number of edges of G is divisible by 3,
- (b) every vertex has even degree.
- Call G triangle divisible if (a) and (b) are satisfied.

Theorem (Kirkman 1847)

A Steiner triple system of order n (i.e. a triangle decomposition of K_n) exists if and only if $n \equiv 1,3 \mod 6$, i.e. if and only if K_n is triangle-divisible.

Divisibility conditions

Question

When does G have an F-decomposition?

If G has a triangle decomposition, then

- (a) the number of edges of G is divisible by 3,
- (b) every vertex has even degree.
- Call G triangle divisible if (a) and (b) are satisfied.

Theorem (Kirkman 1847)

A Steiner triple system of order n (i.e. a triangle decomposition of K_n) exists if and only if $n \equiv 1,3 \mod 6$, i.e. if and only if K_n is triangle-divisible.

Divisibility conditions can be generalised for arbitrary q, r, λ , in which case we say that G is (q, r, λ) -divisible (or $\mathcal{K}_q^{(r)}$ -divisible if $\lambda = 1$).

Theorem (Kirkman 1847)

If K_n is triangle-divisible, then there exists a Steiner triple system, *i.e.* a triangle decomposition of K_n .

- ₹ 🖬 🕨

Theorem (Kirkman 1847)

If K_n is triangle-divisible, then there exists a Steiner triple system, *i.e.* a triangle decomposition of K_n .

Theorem (Wilson 1975)

For n large, every F-divisible K_n has an F-decomposition.

 (n,q,r,λ) -design = set of distinct copies of $\mathcal{K}_q^{(r)}$ in $\mathcal{K}_n^{(r)}$ such that every edge of $\mathcal{K}_n^{(r)}$ is covered exactly λ times

Theorem (Teirlinck 1987)

For every r, there exist infinitely many nontrivial $(n, r+1, r, \lambda)$ -designs, where $\lambda = (r+1)!^{r+1}$.

Theorem (Kuperberg, Lovett and Peled 2013⁺)

There exists an absolute constant C such that whenever $q \ge Cr$ there are infinitely many nontrivial (n,q,r,λ) -designs (for some (large) λ).

Question: What about decompositions, i.e. case $\lambda = 1$?

Relaxation: aim for an 'approximate decomposition' (i.e. an almost perfect packing of edge disjoint $\mathcal{K}_q^{(r)}$)

Conjecture (Erdős and Hanani, 1963)

There exists a $K_q^{(r)}$ -packing in $K_n^{(r)}$ covering all but $o(n^r)$ of the edges of $K_n^{(r)}$ (as $n \to \infty$).

Relaxation: aim for an 'approximate decomposition' (i.e. an almost perfect packing of edge disjoint $K_q^{(r)}$)

Conjecture (Erdős and Hanani, 1963)

There exists a $K_q^{(r)}$ -packing in $K_n^{(r)}$ covering all but $o(n^r)$ of the edges of $K_n^{(r)}$ (as $n \to \infty$).

Theorem (Rödl, 1985)

The conjecture is true.

Proof: 'Rödl nibble' or 'semirandom method' (also very important ingredient in our proof)

Theorem (Keevash 2014⁺)

For any fixed q, r, λ , there exist (n, q, r, λ) -designs. More precisely, if $n \gg q, \lambda$ and $K_n^{(r)}$ is (q, r, λ) -divisible, then there exists an (n, q, r, λ) -design.

- can actually replace $K_n^{(r)}$ by any dense quasirandom r-graph
- proof is based on algebraic and probabilistic arguments.

We generalize this beyond the quasi-random setting, using combinatorial and probabilistic arguments.

from now on restrict to case $\lambda = 1$, results also extend to $\lambda > 1$ $\delta_{r-1}(G)$ = minimum degree of an (r-1)-tuple of vertices

Theorem (Glock, Kühn, Lo, Osthus 2016⁺)

For all $q > r \ge 2$, there exists an $n_0 \in \mathbb{N}$ such that the following holds for all $n \ge n_0$. Let

$$c_{q,r}^\diamond := \frac{r!}{3 \cdot 14^r q^{2r}}.$$

If G is an n-vertex r-graph with $\delta_{r-1}(G) \ge (1 - c_{q,r}^{\diamond})n$, then G has a $K_q^{(r)}$ -decomposition whenever it is $K_q^{(r)}$ -divisible. Previous result leads to notion of decomposition threshold $\delta_{q,r}$:

Definition

Let $\delta_{q,r}$ be the smallest $\delta \in [0,1]$ satisfying the following: for all large enough *n*, every $K_q^{(r)}$ -divisible *r*-graph *G* on *n* vertices with $\delta(G) \ge (\delta + o(1))n$ has a $K_q^{(r)}$ -decomposition.

- Keevash $\Rightarrow \delta_{q,r} < 1$
- GKLO $\Rightarrow \delta_{q,r} \leq 1 c_{q,r}^{\diamond} \approx 1 q^{-2r}$.
- Lower bound construction: $\delta_{q,r} \ge 1 - c_r q^{-r+1} \log q \approx 1 - q^{-r+1}.$

graph case r = 2 has received much attention – see later

Main result: supercomplexes

Previous result follows from our main result on designs in 'supercomplexes'.

Theorem (Glock, Kühn, Lo, Osthus 2016⁺)

If $n \gg q, \lambda$ and G is a (q, r, λ) -divisible supercomplex on n vertices, then G has a (q, r, λ) -design.

(+ generalisation to dense quasirandom r-graphs)

The conditions of being a supercomplex depend mainly on the distribution of q-cliques, which should be 'random-like'.

Main result: supercomplexes

Previous result follows from our main result on designs in 'supercomplexes'.

Theorem (Glock, Kühn, Lo, Osthus 2016⁺)

If $n \gg q, \lambda$ and G is a (q, r, λ) -divisible supercomplex on n vertices, then G has a (q, r, λ) -design.

(+ generalisation to dense quasirandom r-graphs)

The conditions of being a supercomplex depend mainly on the distribution of q-cliques, which should be 'random-like'.

Examples of supercomplexes

- complete r-graphs
- quasirandom *r*-graphs, in particular 'typical' *r*-graphs
- *k*-partite graphs where $k \ge q + 6$

Existence of *F*-designs for arbitrary *F*

so far: considered designs/decompositions into cliques What about decompositions into arbitrary hypergraphs *F*?

F-decomposition = decomposition of edge set of G into copies of F

Existence of *F*-designs for arbitrary *F*

so far: considered designs/decompositions into cliques What about decompositions into arbitrary hypergraphs *F*?

F-decomposition = decomposition of edge set of G into copies of F

Theorem (Glock, Kühn, Lo, Osthus 2017⁺)

Suppose F is an r-graph and suppose that $K_n^{(r)}$ is F-divisible, where $n \gg |F|$. Then $K_n^{(r)}$ has an F-decomposition. (+ generalisation to dense quasirandom r-graphs)

- answers question of Keevash
- graph case r = 2 is due to Wilson
- can replace $K_n^{(r)}$ by any dense quasirandom *r*-graph *G*
- can prove design version with $\lambda>1$
- effective minimum degree version if F is 'weakly regular'

Application: Graph decompositions and embeddings

Special case:

Theorem (Glock, Kühn, Lo, Osthus 2017⁺)

Suppose G is a large quasi-random graph and F is fixed with (i) e(F) divides e(G); (ii) hcf{degrees of F} divides hcf{degrees of G}. Then G has an F-decomposition.

Theorem (Archdeacon)

If graph G has a decomposition into K_4 's, K_5 's and K_6 's, then G has a self-dual embedding.

Corollary (Glock, Kühn, Lo, Osthus 2017⁺)

Almost every graph has a self-dual embedding.

Suppose we seek a $K_q^{(r)}$ -decomposition of an *r*-graph *G*

iterative absorption approach

Split up the absorbing process into many steps which gradually make leftover smaller and smaller.

 \Rightarrow final leftover *L* has bounded size and lies within prescribed set *X*

 \Rightarrow only boundedly many possibilities H_1,\ldots,H_s for leftover L

Suppose we seek a $K_q^{(r)}$ -decomposition of an *r*-graph *G*

iterative absorption approach

Split up the absorbing process into many steps which gradually make leftover smaller and smaller.

- \Rightarrow final leftover L has bounded size and lies within prescribed set X
- \Rightarrow only boundedly many possibilities H_1,\ldots,H_s for leftover L
- \Rightarrow suffices to find an 'exclusive absorber' A_i for each H_i , i.e.
- $A_i \cup H_i$ has a $K_q^{(r)}$ -decomposition
- A_i has a $K_q^{(r)}$ -decomposition

Recall:

An exclusive absorber A for a potential leftover graph H satisfies

- $A \cup H$ has a $K_q^{(r)}$ -decomposition
- A has a $K_q^{(r)}$ -decomposition

We construct exclusive absorbers out of 'transformers'. Ignore divisibility.

Definition

An *r*-graph *T* is an (H_1, H_2) -transformer if both $H_1 \cup T$ and $T \cup H_2$ have $K_q^{(r)}$ -decompositions.

Aim: transform leftover H_1 step by step into *r*-graph which is trivially decomposable

The exclusive absorber: general idea

General Idea:

- construct absorber as concatenation of transformers
- show that each H can be transformed into 'canonical graph' C which only depends on e(H)
- by transitivity this implies that each H can be transformed into a disjoint union J of $\mathcal{K}_q^{(r)}$, which is trivially decomposable

Conjecture (Nash-Williams 1970)

Every large K_3 -divisible graph G on n vertices with $\delta(G) \ge 3n/4$ has a K_3 -decomposition.

Extremal example: blow up each vertex of C_4 to a K_m (*m* odd and divisible by 3).

Each triangle has at least one edge in one of the four cliques but less than a third of the edges lie inside the cliques.

Conjecture (Nash-Williams 1970)

Every large K_3 -divisible graph G on n vertices with $\delta(G) \ge 3n/4$ has a K_3 -decomposition.

- true if $\delta(G) \ge (0.9 + o(1))n$ (Barber, Kühn, Lo, Osthus & Dross)
- showing that $\frac{3n}{4}$ guarantees 'fractional decomposition' or approx. decomposition would suffice
- conjectured threshold for K_q -decompositions: $\frac{qn}{q+1}$, partial results by Barber, Glock, Kühn, Lo, Montgomery, Osthus
- similar questions in partite setting, partial results by BKLMOT (applications to completions of partially filled latin squares)