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Skew-morphisms

Skew-morphism A permutation ψ of elements of a group G is
called a skew-morphism if

• ψ(1G) = 1G and
• ψ(a · b) = ψ(a) · (ψ(b))π(a), where π : G→ Z is

a power function.

Jajcay and Siran CM(G,P ) is orientably regular iff P extends to
a skew-morphism of G.

Structure Aut(CM(G,P )) = GL · 〈ψ〉
A fact Skew morphisms appear in constructions of groups

acting on orientable surfaces, the main reason is that
stabilisers of such actions are cyclic and sometimes
the stabiliser has a complement



Skew morphisms and skew products of groups

Given a skew morphism σ of a group H we may form a product
G = HL · 〈σ〉, where HL is the left-regular representation.

Vice-versa, let HL ≤ G ≤ Sym(H). Suppose the stabiliser G1 is
cyclic. Then any generator σ of G1 = 〈σ〉 is in Skew(H).

Hence, Skew(H) contains a complete information on the products
H · C, where C is cyclic.
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Group products and skew morphisms

Let G be a finite group having a factorisation G = AB into
subgroups A and B with B cyclic and A ∩B = 1; and let b be a
generator of B. Then there exists a bijective mapping f : A→ A
well defined by the equality baB = f(a)B, moreover, f is a skew
morphism of A.

Cyclic case: If both A and B are cyclic, we can transpose the role
of A and B since AB = BA. Let a be a fixed generator of A.
Then the equality abA = f∗(b)A determines a skew morphism of
A.
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Products of cyclic groups

Let G = Zn then GL = 〈τ〉, where τ(x) = x+ 1.

Let σ be a skew-morphism of Zn. Then the characteristic identity
for σ can be expressed as

στy = τσ(y)σπ(y) for all y ∈ Zn.

So it defines a commuting rule in the product of cyclic groups
〈τ〉〈σ〉.
Classification of products of cyclic groups - an old project of
Wieland, Huppert, Schur,.... For instance, if the product is a
p-group, p is odd we know that it is a metacycyclic group and a
parametrized presentation is known,
But we want more...
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Why skew-morphisms are difficult to understand?

• understanding Aut(G) for a general group G is a hard
problem, and automorphisms are the simplest
skew-morphisms,

• Skew(G) is not closed under composition,

• Skew(G) allows understanding products GL · 〈ψ〉 and in
general products of the form G · C, where C is cyclic, a
difficult problem in group theory even for G cyclic,
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Pure skew-morphisms in Zpe, p an odd prime

• Set σa,b(x) = ax+ bx(x−1)2 , a ≡ 1 mod p and b ∈ 〈pe−1〉.
• The permutations σa,b are pure skew-morphisms of Zpe if and

only if a ≡ 1 mod p, a /∈ 1 + 〈pe−1〉 and b 6= 0.

• The total number of s-m of Zpe , e ≥ 2 is
(p− 1)(p2e−1 − p2e−2 + 2)/(p+ 1) > (p− 1)pe−1



Regular dessins

• Dessin is a bipartite bicoloured map.

• Regular dessin is a dessin D such that Aut(D) is regular on
the edges.

• Regular dessins corresponds to the triples (G;x, y), where
G = 〈x, y〉

• Complete regular dessin: G = 〈x〉〈y〉 and 〈x〉 ∩ 〈y〉 = 1,

• If |x| = m and |y| = n, then the underlying graph is Km,n.



Skew morphisms and complete regular dessins

Let ϕ and ϕ′ be skew-morphisms of the cyclic groups Zn and Zm,
and let π and π′ be the associated power functions, respectively. If

(i) the orders of ϕ and ϕ′ divide m and n respectively,

(ii) π(x) ≡ −ϕ′−x(−1) (mod |ϕ|) and π′(y) ≡ −ϕ−y(−1)
(mod |ϕ′|).

then the skew-morphism pair (ϕ,ϕ′) will be called admissible.

Theorem

Given pair of positive integers (m,n) the admissible pairs of skew
morphisms are in one-to-one correspondence with the isomorphism
classes of complete regular dessins with the underlying graph Km,n.



Trivial admissible pairs

Since (idm, idn) is a (trivial) admissible pair of skew morphisms,
for each (m,n) there exists at least one complete regular dessin
with the underlying graph Km,n.

When there are no others?

Remark: The admissible pair (idn, idn) determines the dessin that
corresponds to the Fermat curve xn + yn = 1.



Uniqueness theorem

An integer is called singular if and only if (n, φ(n)) = 1 A pair
(m,n) of positive integers m and n will be called singular if
(m,φ(n)) = (n, φ(m)) = 1.

Theorem. Let (m,n) be a pair of positive integers. Then there
exists a unique complete regular dessin with the underlying graph
Km,n if and only if (m,n) is a singular pair of integers.

Remark 1: There is a unique group of order n if and only if n is
singular.

Remark 2 Erdos proved that the portion of integers n ≤ N that
are singular is asymptotically 1

eγ log log logN , where
γ = 0.57721566490153286060651209008240243104215933593992... is
the Euler constant
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Regular embeddings of Kn,n

• self-dual dessins with respect to swapping the colours,

• the respective admissible pairs are of the form (ϕ,ϕ)

• Classification done by Jones, Škoviera, Du, Kwak, N. in a
serie of papers using group theoretical methods, for instance if
n = pe there are pe−1 such dessins,

• Corollary: There is 1-1 correspondence between regular
embeddings of Kn,n and skew-morphisms, of cyclic group Zn
such that ord(σ)|n and π(x) = −σ−x(−1).

• One implication observed by Kwak and Kwon.



Problems

1 Classify complete regular dessins.

2 What is the densite of singular pairs of integers?

3 What are the curves that correspond to complete regular
dessins?

4 Characterise regular dessins defined by their automorphism
groups. The corresponding curves will be nice, since such
dessins are fixed by the action of the absolute Galois group.

End of Talk

Continuation: A Suplement
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Number of epimorphisms Π1(O)→ Z`
THEOREM: (Mednykh,N. 2006) Let Γ = F [g;m1, . . . ,mr] be an
F−group of signature (g;m1, . . . ,mr) and
m = lcm (m1, . . . ,mr), m|`.
Then the number of order-preserving epimorphisms of the group Γ
onto a cyclic group Z` is given by the formula

Epi0(Γ,Z`) = m2gφ2g(`/m)E(m1,m2, . . . ,mr),

where

E(m1,m2, . . . ,mr) =
1

m

m∑
k=1

Φ(k, m1) · Φ(k, m2) . . .Φ(k, mr).

In particular, if Γ = F [g; ∅] = F [g; 1] is a surface group of genus g
we have

Epi0(Γ,Z`) = φ2g(`).



Additional info

Jordan function: ϕp(`) =
∑
d| `
µ( `d) dp

VonSerneck function:

Φ(x, n) =
φ(n)

φ( n
(x,n))

µ

(
n

(x, n)

)
=

∑
1≤k≤n
(k, n)=1

exp(
2 ikx

n
).
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