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Future power distribution grids

transmission
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distribution
grid

Traditional

Power

Generation

It delivers power from

the transmission grid to

the consumers.

Very little sensing,

monitoring, actuation.

The “easy” part of the

grid: conventionally

fit-and-forget design.
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New challenges

Distributed microgenerators (conventional and renewable sources)

Electric mobility (large flexible demand, spatio-temporal patterns).
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Physical grid limits→
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Fit-and-forget→

unsustainable grid

reinforcement
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Virtual grid reinforcement
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Virtual grid reinforcement

– same infrastructure

– more sensors

– controlled grid = stronger grid

– distributed ancillary services

– accomodate active power flows

“transparently”

4



OVERVIEW

1. A feedback control perspective on power system operation

2. A tractable power grid model for feedback control design

3. Control design example: voltage regulation

– Distributed “model-free” control

– Centralized chance-constrained decision

5



A FEEDBACK CONTROL PERSPECTIVE

ON POWER SYSTEM OPERATION
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Power distribution grid model

active power ph

reactive power qh

voltage magnitude vh

voltage angle θh h

0

microgenerator load

supply point

Grid model

Nonlinear complex valued power flow

equations

diag(u)Yu = s

where

uh = vhejθh complex bus voltages

sh = ph + jqh complex bus powers

Actuation

Tap changer – v0

Reactive power compensators – qh

Active power management – ph

Sensing

Voltage meters – vh (sometimes θh)

Line currents, transformer loading, . . .

Underdetermined: few sensors
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A control perspective on distributed grid operation

grid sensing

grid actuation

Power distribution
network

plant

state x

power demands

power generation

Ancillary services: voltage regulation / reactive power compensation / economic

re-dispatch / loss minimization / line congestion control / energy balancing / . . .

Control objective

Drive the system to a target state x∗ =
[

v∗ θ∗ p∗ q∗
]

subject to

soft constraints x∗ = argminx J(x)

hard constraints x ∈ X

chance constraints P [x 6∈ X ] < ǫ
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Feedforward control

grid sensing

grid actuation

Power distribution
network

plant

state x

power demands

power generation

OPF

Conventional approach

Core tool: Optimal Power Flow

Fast OPF solvers in radial networks

Many variants, including distributed implementations

However:

Requires full state measurement - full communication

Heavily model based
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Feedback control

grid sensing

grid actuation

Power distribution
network

plant

state x

power demands

power generation

FEED
BACK

input

disturbance

output

Control theory answer

Disturbance rejection ≡ grid state regulated despite demand/generation

Model-free design

Robustness against uncertainty

Output feedback
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A TRACTABLE POWER GRID MODEL

FOR FEEDBACK CONTROL DESIGN
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Power flow manifold

Set of all states that satisfy the grid equations diag(u)Yu = s

→ power flow manifold M := {x |F (x) = 0}
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solution x∗ ∈M

Ax∗ (x − x∗) = 0 Ax∗ :=
∂F (x)

∂x

∣

∣

∣

∣

x=x∗

Implicit – No input/outputs (not a disadvantage)

Sparse – The matrix Ax∗ has the sparsity pattern of the grid graph

Structure preserving – Elements of Ax∗ depend on local parameters

→ Bolognani & Dörfler (2015)

“Fast power system analysis via implicit linearization of the power flow manifold”
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CONTROL DESIGN EXAMPLE:

VOLTAGE REGULATION
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Case 1: hard constraints

microgenerator voltage vh

microgenerator reactive power qh

Power distribution
network

plant

state x

power demands

power generation

FEED
BACK

input

disturbance

output

v ≤ vh ≤ vq
h
≤ qh ≤ qh

Inputs: reactive power qh of microgenerators

Outputs: voltage measurement vh at the microgenerators

Control objective:
– Soft constraints

minimize vT Lv (voltage drops on the lines)

– Hard constraints

V ≤ vh ≤ V at all sensors

q
h

≤ qh ≤ qh at all actuators
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Case 1: hard constraints

power flow manifold

linear approximant

1. Modeling assumption

Modeling assumption

on the parameters: constant R/X ratio ρ.

on the structure: Kron reduction to controllable nodes

Ax∗ (x − x∗) = 0 →

[

ρL −L

−L −ρL
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]
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

v
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p
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







= 0
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Case 1: hard constraints

power flow manifold

linear approximant

1. Modeling assumption

2. Equilibrium

Equilibrium: Saddle point of the Lagrangian

L(x, λ, η) = vT Lv + λT (v − v) + ηT (q − q) + ...

Stable for the discrete-time trajectories in which we alternate

exact minimization in the primal variable x

projected gradient ascent in the dual variables λ, η
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Case 1: hard constraints

power flow manifold

linear approximant

search direction

x

1. Modeling assumption

2. Equilibrium

3. Trajectory

Search directions: By projecting each possible direction δq on the linear manifold

ker Ax∗ , we obtain feasible search directions in the state space.

δx =









− 1

1+ρ2 L†δq

− ρ

1+ρ2 L†δq

0

δq








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Case 1: hard constraints

power flow manifold

linear approximant

search direction

x

∂L
∂x

δx

1. Modeling assumption

2. Equilibrium

3. Trajectory

4. Feedback law

Primal minimization step: we determine the step δx such that

∂L

∂x
=









2Lv + λ

0

0

−η




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
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

− 1

1+ρ2 L†δq

− ρ

1+ρ2 L†δq

0

δq




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satisfy
∂L

∂x
(x + δx, λ, η)T δx = 0
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Case 1: hard constraints

1. Modeling assumption

2. Equilibrium

3. Trajectory

4. Feedback law

Output feedback control law

q ← q + (1 + ρ2) (Lv + λ) + (1 + ρ2)2Lη primal minimization

λh ← [λh + α(vh − v)]≥0

ηh ←
[

ηh + β(qh − qh)
]

≥0

}

dual ascent (integral action)

Lv, Lη Diffusion terms that requires nearest-neighbor communication.
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Case 1: hard constraints

ORPF

communication complexity

p
er
fo
rm

an
ce

purely
local
control

short-range
communication

scalable
plug-and-play

networked
control

same feasible
equilibrium
as ORPF

Output feedback control law

convergence to OPF solution

no demand or generation measurement

limited model knowledge

no power flow solver

interleaved sensing and actuation

Proof of mean square convergence (with randomized async updates)

→ S. Bolognani, R. Carli, G. Cavraro, & S. Zampieri (2015)

“Distributed reactive power feedback control for voltage regulation and loss minimization”

Communication is necessary:

No local strategy can guarantee convergence to a feasible voltage profile.

→ G. Cavraro, S. Bolognani, R. Carli, & S. Zampieri (2016)

“The value of communication in the voltage regulation problem”
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Case 2: chance constraints

total power demand

microgenerator active power

Power distribution
network

plant

state x

power demands

FEED
BACK

input

disturbance w

output y =
∑

h ph

P [x 6∈ X] < ǫ

Inputs: active power ph of microgenerators

Outputs: total grid demand y =
∑

h
ph

Control objective:
– Soft constraints

maximize

∑

generators h

ph (minimize curtailment)

– Chance constraint

V ≤ vh ≤ V for all buses, with high probability
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Case 2: chance constraints

Scenario approach

Convert stochastic constraint into large set of determistic ones

P [x 6∈ X(w)] < ǫ → x ∈ X(w (i)), i = 1, . . . , N

Two sources of information on the unknown w

Historical samples w (i) of the prior distribution

Online measurements y = Hw from the system

−4 −2 0 2 4 6
−2

0

2

4

6

8

Scenario approach based on conditional distribution

High computational demand

Large memory footprint

→ Not suited for real-time feedback control
18



Case 2: chance constraints

Disturbance

samples

{w(i)}

Offline algorithm

Augmented

polytope

P̂

Measurement

y

Online algorithm Decision (input)

Preprocessing

Real-time feedback

−5 5 10
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15

y = 0 [MW]

y = 3 [MW]

y = 5 [MW]

no measurement

p30 [MW]

p38 [MW]

Two-phase algorithm

Express posterior distribution as a

projection: ŵy = w + K (y − Hw)

Construct a feasible region

parametrized in y offline

Compute the conditional feasible

polytope online

Computation time

Offline Compute Σ and K

Construct augmented polytope P̂

Compute minimal representation of P̂

Total offline computation time 55 min

Online Slice P̂ at y = ymeas to obtain P̂y

Solve LP defined on P̂y

Total online computation time 1.8 ms

Memory footprint

Offline Augmented polytope P̂ 48620 constraints

Online Minimal representation of P̂ 12 constraints 19



CONCLUSIONS
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Conclusions

A tractable linear model

– structure preserving

– computationally efficient

Ancillary services
via feedback control

– model-free and robust

– limited measurement

– need for communication

Next step

– Feedback on the power flow manifold

power flow manifold

linear approximant

x(t)

Gradient of cost function

Projected gradient

x(t + 1)
Retraction
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→ A. Hauswirth, A. Zanardi, S. Bolognani, F. Dörfler, & G. Hug (2017)

“Online Optimization in Closed Loop on the Power Flow Manifold”
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THE VALUE OF COMMUNICATION IN VOLTAGE REGULATION
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Simulations and comparison

0 10 20 30 40 50

V
o
lt

a
g
e
 [

p
.u

.]

1

1.05

1.1

R
e
a
c
ti

v
e
 p

o
w

e
r 

[p
.u

.]

0

1
v1

v2

|q
1
| |q

2
|

Modified IEEE 123 Distribution Test Feeder → github

Light load + 2 microgenerators→ overvoltage

2 sets of constraints:

{

voltage limits vh ≤ v

power converter limits q
h
≤ qh
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Simulations and comparison
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qh(t) = −f (vh(t))

Latest grid code draft

Turitsyn (2011)
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Kekatos (2015)
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Simulations and comparison
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Simulations and comparison
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Networked feedback control (neighbor-to-neighbor communication)

λh ← [λh + α(vh − v)]≥0

ηh ←
[

ηh + β(qh − qh)
]

≥0

q ← q − γ∇J(q)− λ −L̃η
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FEEDBACK OPTIMIZATION ON THE POWER FLOW MANIFOLD
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Gradient descent on the power flow manifold

Target state

x∗
= arg min

x∈M
J(x)

local minimizer on the

power flow manifold

power flow manifold

linear approximant

x(t)

Gradient of cost function

Projected gradient

ẋ

Continuous time trajectory on the power flow manifold

1. ∇J(x): gradient of the cost function (soft constraints) in ambient space

2. Πx∇J(x): projection of the gradient on the linear approximant in x

3. Flow on the manifold: ẋ = γΠx∇J(x)
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Gradient descent on the power flow manifold

x =

[

xexo

xendo

]

Exogenous variables

Inputs/disturbances

Reactive power injection qi

Endogenous variables

Determined by the

physics of the grid.

Voltage vi

power flow manifold

linear approximant

x(t)

Gradient of cost function

Projected gradient

x(t + 1)
Retraction

From gradient descent flow to discrete-time feedback control:

1. Compute Πx∇J(x)

2. Actuate system based on δx = γΠ∇J (exogeneous variables / inputs)

3. Retraction step x(t + 1) = Rx(t)(δx) ⇒ x(t + 1) ∈M.
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Hard constraints: need for a new theory

Feasible input region

Not a smooth manifold

Projected gradient descent

Retraction preserves feasibility

→ A. Hauswirth, S. Bolognani, G. Hug, & F. Dörfler (2016)

“Projected Gradient Descent on Riemannian Manifolds

with Applications to Online Power System Optimization”

min
x∈M∩K

J(x)

Output constraints

No barrier function (backtracking not allowed)

No time-varying penalty (persistent feedback control)

Dualization: saddle / primal-dual trajectories on manifolds
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Feedback optimization on the power flow manifold
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Gen 1 Gen 2 Gen 3 Optimal tracking

Feasible trajectory

Joint economic dispatch / volt-VAR

optimization

→ A. Hauswirth, A. Zanardi, S. Bolognani, F. Dörfler, & G. Hug (2017)

“Online Optimization in Closed Loop on the Power Flow Manifold”29


