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New challenges

= Distributed microgenerators (conventional and renewable sources)
= Electric mobility (large flexible demand, spatio-temporal patterns).
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Virtual grid reinforcement
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TH
OVERVIEW

1. A feedback control perspective on power system operation
2. A tractable power grid model for feedback control design

3. Control design example: voltage regulation

— Distributed “model-free” control
— Centralized chance-constrained decision



A FEEDBACK CONTROL PERSPECTIVE
ON POWER SYSTEM OPERATION



Power distribution grid model
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Grid model Actuation |

Nonlinear complex valued power flow = Tap changer — vo
equations

m Reactive power compensators — g,

diag(u)Yu = s = Active power management — pp,

where

m U, = v,  complex bus voltages

= s, =pr+jgn  complex bus powers m \oltage meters — v}, (sometimes 6y,)

m Line currents, transformer loading, ...

= Underdetermined: few sensors



A control perspective on distributed grid operation

power generation

power demands

™ Power distribution
grid actuation network
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state x

grid sensing
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Ancillary services: voltage regulation / reactive power compensation / economic
re-dispatch / loss minimization / line congestion control / energy balancing / ...

Control objective

Drive the system to a target state x* = [v*  6* p* q*| subjectto

= soft constraints x* = argmin, J(x)
= hard constraints x ¢ X
= chance constraints P[x € X] <e



Feedforward control

power generation

power demands
Power distribution grid sensing
grid actuation network - >
OPF state x

Conventional approach

= Core tool: Optimal Power Flow
= Fast OPF solvers in radial networks
= Many variants, including distributed implementations

However:
» Requires full state measurement - full communication

= Heavily model based



Feedback control

power generation
disturbance power demands

plant

grid actuation

input
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= Disturbance rejection = grid state regulated despite demand/generation

= Model-free design

= Robustness against uncertainty

m Output feedback



A TRACTABLE POWER GRID MODEL
FOR FEEDBACK CONTROL DESIGN



Power flow manifold
Set of all states that satisfy the grid equations diag(u)Yu = s

— power flow manifold M := {x|F(x) = 0}

Best linear approximant

Tangent plane at a nominal power flow
solution x* € M

._ OF(x)
T ox

Ax*(X_X*)=0 Ax*

X=X*

= Implicit — No input/outputs (not a disadvantage)
= Sparse — The matrix A~ has the sparsity pattern of the grid graph
m Structure preserving — Elements of A~ depend on local parameters
— Bolognani & Dérfler (2015)

“Fast power system analysis via implicit linearization of the power flow manifold”
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CONTROL DESIGN EXAMPLE:
VOLTAGE REGULATION



Case 1: hard constraints

power generation plant

disturbance power demands
Power distribution microgenerator voltage vj,
microgenerator reactive power gy, network >
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= Inputs: reactive power gy of microgenerators

= Outputs: voltage measurement v, at the microgenerators
= Control objective:
— Soft constraints
minimize v’ Lv  (voltage drops on the lines)
— Hard constraints
Vv<w< V atall sensors
q, <gn<gq, atallactuators



Case 1: hard constraints

linear approximant

1. Modeling assumption

power flow manifold

Modeling assumption
= on the parameters: constant R/X ratio p.
= on the structure: Kron reduction to controllable nodes

o oL —L |- 0
Ax(x—x")=0 — [—L —pL‘O )

Q T < <



Case 1: hard constraints

linear approximant

1. Modeling assumption
2. Equilibrium

power flow manifold

Equilibrium: Saddle point of the Lagrangian
LA =V LV + A (v =) +9 (g —q) + ...

Stable for the discrete-time trajectories in which we alternate
= exact minimization in the primal variable x
= projected gradient ascent in the dual variables A, n



Case 1: hard constraints

linear approximant

1. Modeling assumption
2. Equilibrium

3. Trajectory

search direction

power flow manifold

Search directions: By projecting each possible direction g on the linear manifold
ker Ay, we obtain feasible search directions in the state space.
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Case 1: hard constraints

linear approximant

1. Modeling assumption
2. Equilibrium

3. Trajectory

4. Feedback law

search direction

power flow manifold

Primal minimization step: we determine the step éx such that

2Lv + A ~fzLiéq
oL 0 —25L%sq . oL T
- = = 1+p2 =
o o and x p@ satisfy o (x+dx,\,n)' dox=0

-n 6q




Case 1: hard constraints

1. Modeling assumption
2. Equilibrium

3. Trajectory
4. Feedback law

Output feedback control law

Lv,Ln

g q+(1+p)(Lv+N)+(1+p%%Ly  primal minimization
)\h <— [)\h + Oé(Vh — V)]>O . .

- dual ascent (integral action)
Mh < [1mh + B(an — )] >0

Diffusion terms that requires nearest-neighbor communication.



Case 1: hard constraints

same feasible Output feedback control law
equilibrium

P control

networked

performance

= convergence to OPF solution

short-range

communeation = no demand or generation measurement

scalable
plug-and-play

limited model knowledge

no power flow solver

interleaved sensing and actuation

communication complexity

= Proof of mean square convergence (with randomized async updates)
— S. Bolognani, R. Carli, G. Cavraro, & S. Zampieri (2015)
“Distributed reactive power feedback control for voltage regulation and loss minimization”
= Communication is necessary:
No local strategy can guarantee convergence to a feasible voltage profile.

— G. Cavraro, S. Bolognani, R. Carli, & S. Zampieri (2016)
“The value of communication in the voltage regulation problem”



Case 2: chance constraints

plant

disturbance w power demands

Power distribution total power demand
network

microgenerator active power

output y = ) py

state x <—|

FEED \\\

BACK k]P’[x¢5£]<e

input

= Inputs: active power py, of microgenerators

= Outputs: total grid demand y = >, pn
= Control objective:
— Soft constraints
maximize Z Pn (minimize curtailment)
generators h
— Chance constraint
V <v, <V forall buses, with high probability



Case 2: chance constraints

Scenario approach

Convert stochastic constraint into large set of determistic ones

Plx ¢ X(W)] < ¢ -  xexw™, i=1,...N

Two sources of information on the unknown w
= Historical samples w) of the prior distribution
= Online measurements y = Hw from the system

Scenario approach based on conditional distribution

= High computational demand

= Large memory footprint
— Not suited for real-time feedback control



Case 2: chance constraints

Preprocessing

Disturbance
samples
Wy

Real-time feedback

M
Offline algorithm easurement

y
Augmented
polytope Online algorithm Decision (input)
P

Pag [MW]

y = 5[MW]
N y=3Mw

no measurement
y=0[MW]

Two-phase algorithm

= Express posterior distribution as a
projection: Wy, = w + K(y — Hw)

= Construct a feasible region
parametrized in y offline

= Compute the conditional feasible
polytope online

Computation time

Offline  Compute X and K

Construct augmented polytope 7
Compute minimal representation of 7

Total offline computation time 55 min

Online ~ Slice P aty = y™ to obtain 7,

Solve LP defined on 7,

Total online computation time 1.8 ms

Memory footprint

Offline  Augmented polytope 7
Online  Minimal representation of 7

48620 constraints
12 constraints 19



CONCLUSIONS
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Conclusions

= A tractable linear model

— structure preserving
— computationally efficient

= Ancillary services
via feedback control

— model-free and robust
— limited measurement
— need for communication

= Next step
— Feedback on the power flow manifold

linear approximant
Gradient of cost function

Projected gradient
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— A. Hauswirth, A. Zanardi, S. Bolognani, F. Dérfler, & G. Hug (2017)
“Online Optimization in Closed Loop on the Power Flow Manifold”
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THE VALUE OF COMMUNICATION IN VOLTAGE REGULATION
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Simulations and comparison
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voltage limits v, <Vv
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Simulations and comparison
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Simulations and comparison
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Simulations and comparison

T T T T T
11 1
3
L] o
3 —
=% no steady state error ag)
L o
g 1.05 PSo)d [s%
] o° ¢
o o =
> 500000000 117G
‘OOOOOOO 0000000 &
500000 &

1 00O ) . 0000000000000000 A
reactive power sharing =
T T T T 0
0 10 20 30 40 50

Networked feedback control (neighbor-to-neighbor communication)
Ap — [Ah + Oé(Vh — V)]zo
Th < [1h + B(Qn — )] >0
g q—yVJ@Q) — Ly

24



FEEDBACK OPTIMIZATION ON THE POWER FLOW MANIFOLD
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Gradient descent on the power flow manifold

linear approximant
Gradient of cost function

Target state Projected gradient

x* = arg Xrgljcl J(x)

local minimizer on the
power flow manifold

Continuous time trajectory on the power flow manifold
1. VJ(x): gradient of the cost function (soft constraints) in ambient space
2. MNyVJ(x): projection of the gradient on the linear approximant in x
3. Flow on the manifold: x = A1, VJ(x)
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Gradient descent on the power flow manifold

Gradient of cost function

X = Xexo linear approximant
Xendo

Exogenous variables
Inputs/disturbances

Reactive power injection q;
Endogenous variables

Determined by the
physics of the grid.

Voltage v;

From gradient descent flow to discrete-time feedback control:
1. Compute My VJ(x)
2. Actuate system based on éx = ATVJ (exogeneous variables / inputs)
3. Retraction step x(t + 1) = Ry((6x) = x(t+1) e M.
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Hard constraints: need for a new theory

Feasible input region min  J(x)
xeMnNK

= Not a smooth manifold
m Projected gradient descent
= Retraction preserves feasibility

— A. Hauswirth, S. Bolognani, G. Hug, & F. Dérfler (2016) 005
“Projected Gradient Descent on Riemannian Manifolds T— '
with Applications to Online Power System Optimization” o 0 !

Output constraints

= No barrier function (backtracking not allowed)

= No time-varying penalty (persistent feedback control)
= Dualization: saddle / primal-dual trajectories on manifolds
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Feedback optimization on the power flow manifold

Load profiles [MW]
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= Optimal tracking
m Feasible trajectory

= Joint economic dispatch / volt-VAR
optimization

— A. Hauswirth, A. Zanardi, S. Bolognani, F. Dérfler, & G. Hug (2017)
“Online Optimization in Closed Loop on the Power Flow Manifold” 29



