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Motivation: learning from correlated samples, or time series

Assume linear dynamics: X(t) = AX(t) + £(t), with £(t) Gaussian noise

Given N time series, is it possible to reconstruct the structure and parameters of A?
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Motivation: learning from correlated samples, or time series
Assume linear dynamics: X(t) = AX(t) + &(t), with £(t) Gaussian noise

Given N time series, is it possible to reconstruct the structure and parameters of A?
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What happens if only Ny < N time series are observed? X = Xp U Xy



Example: graph-based anomaly detection in cyber-physical systems

Task: detect and localize attacks on CPS using physical measurements

Smart Factories & Industry ~ Critical Infrastructures & Smart Grid

= =
o Attacked nodes O

Self-Driving Cars and Avionics Complex Transportation

Approach: assuming linearized dynamics,
learn the normal graph and monitor changes

Normal operation Fault or attack

Setting: structure unknown, usually no hidden nodes



Example: reconstructing the power grid dynamics

State estimation and parameter learning in dynamics of the transmission power grid

0; = fi Mif; + 7ife = pi = Y 35(0; — 0;) + &(t).

jri

Task: reconstruct parameters of generators and lines (evolve slowly, ~ hours) and
injections and consumptions (evolve rapidly, ~ minutes) from sensor measurements

Setting: structure known, but hidden observations (sparsely located PMUs)



Reduction to the static problem?

For stable systems: explore Lyapunov equation for the stationary covariance matrix

A +TA  +1=0

[Wang, Bialek, Turitsyn 2015], [Zare, Jovanovié, Georgiou 2016]

Disadvantages: requires knowledge of some part of A, hard to generalize to hidden case

Subsampling independent samples:
use static Gaussian graphical model learning

Disadvantages: only stationary regime,
wasting samples (desiring ~ log N samples),
Y has less information (supp(A) # supp(X 1))

i.i.d. samples
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In what follows

For simplicity, consider discrete-time dynamics: X;i1 = AX; + &, with & white noise*

v Complete observations on all nodes
(a) Known graph structure: least-squares objective

(b) Unknown graph: ¢; and ¢q regularizations

v Partially observed system
(a) Known graph: convex formulation, incomplete solution
(b) Unknown graph: sparsity and low-rank regularizations

(c) Non-convex EM-type algorithm

* Remark: Intuitively and rigorously [Bento et al., 2010], in the case of continuous equations, there exists an optimal discretization step At



Complete observations: known graph structure

T-1
Assuming the uniform prior on A, P(A | X,€) < exp(— > || Xer1 — AX¢||?/20?)
t=1

T-1
Ammse = Aviap = arg;nin D X — AXe)?

t=1

For a sufficient number of samples M « N,
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Unknown graph and high-dimensional regime

Regularized least-squares: [Bento, Ibrahimi, Montanari 2010]
T-1
N _ ,
A = argmin E [ Xex1 — AXe||” + A||All1
A
t=1

Reconstructs graph structure with M o log N samples under incoherence condition and
assumptions on (Amin, Amax) Of covariance matrix

Open question: similarly to the Gaussian GM selection, assumptions-free algorithm?
Candidate: non-convex £, sparsity constraint [Misra, Vuffray, AL, Chertkov 2017]



Partial observations: convex formulation

Likelihood of observations:

P(Z\ofxyﬁ):/x dXuP(A ] X, §), Ao = Ao — AouAyt Ano = Ao + L
H



Partial observations: convex formulation

Likelihood of observations:
P(Ao | X,8) Z/ dXuP(A ] X, §), Ao = Ao — AouAyt Ano = Ao + L
X

Leads to a convex “Lasso” type formulation for small |#]|:

(A0, 1) —arAgmm[antH (Ao + DX + MllAollz + AallL.]
07

Adaptation of [Giraud and Tsybakov 2012], [Jalali, Sanghavi 2012]
M o log N under incoherence assumption. If the graph is known, one could further
attempt to decompose the matrix L into sparse factors, see e.g. [witten, Tibshirani, Hastie 2000].



Partial observations: convex formulation

Likelihood of observations:

P(Ao | X,&) = ; dXyuP(A| X,€), Ao = Ao — AouA Ano = Ao + L
H

Leads to a convex “Lasso” type formulation for small |H|:

T-1
(Ao Z)—argmLm[ZHXm (Ao + L)X |1? + AllAolly + A2lL]l«
Ao, t=1

Adaptation of [Giraud and Tsybakov 2012], [Jalali, Sanghavi 2012]
M oc log N under incoherence assumption. If the graph is known, one could further
attempt to decompose the matrix L into sparse factors, see e.g. [witten, Tibshirani, Hastie 2000].

Open question: is it possible to devise assumptions-free algorithm?
Candidate: non-convex explicit rank constraint rank(L) < |H| [vuan & Lauritzen, Meinshausen
2012] together with an £g sparsity constraint [Misra, Vuffray, AL, Chertkov 2017]



Partial observations: alternative convex formulation

Likelihood P(A | X, &) can be rewritten in the static form over the trajectories:

P(A| X,€) o Vdet Bexp (-)?TBX) . X = [Xees o X,

AT A A
AT 14ATA A

AT 1+ATA A
1+ATA A
AT 1



Partial observations: alternative convex formulation

Likelihood P(A | X, &) can be rewritten in the static form over the trajectories:

P(A| X,€) o Vdet Bexp (-)?TBX) . X = [Xees o X,

AT A A
AT 14ATA A

AT 1+ATA A
1+ATA A
AT 1

Likelihood of observations:
PBo | X.€) = | dXuP(B]X.6).  Bo=Bo— Bowyltuo
X

Leads to a “Graph Lasso” type convex formulation for Bo — L = 0 and L > 0:

(Bo, L) = argmin [tr(z(so — L)) — logdet(Bo — L) + A\1]|Boll1 + Aatr(L)
Bo,L
Adaptation of [Chandrasekaran, Parillo and Willsky 2012]



Partial observations: Expectation-Maximization approach

Given initial guess AG=0) iterate until convergence:
Expectation: compute Q(A, A®)) =E [P(A | Xo U Xy, €) | Xo, A®)]

Maximization: update A1) = argmax Q(A, A®))
A

The closest reference [Shumway, Stoffer 1982]

Not widely considered (hard to analyse), but natural choice if the graph is known



Path forward

v’ Theoretical analysis of the algorithms
v Establishing best algorithms in practice (using modern solvers, EM)

v Application to the power grid and cyberphysical data sets



