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SETUP

Consider a high dimensional linear regression setting,
Y=X~y"+28" +¢, (1)

where Z € R" and X € R"*P are the design matrices, p > n, e € R" is the
error term independent of the design with E(e) = 0 and E(ee ") = o2, and
~* and B8* are unknown model parameters.

We focus on the problem of testing single entries of the model parameter,
namely the following hypothesis:

Ho : B = Bo, versus Hi: 8" # fo. (2)

Sparsity assumption: ||v*||o := sy < n and for inference procedures is such
that s, logp/yv/n — 0as n — co.

What happens if we apply sparsity-based methods when the underlying
model parameter is not sparse? Can we obtain misleading and spurious
results ?



EXAMPLE 1

* Assume: X = I, ¢; are i.i.d. with A/(0,1) and such that for a € [-10,10]
=0 and 4 =ap ",

* We consider the “de-biasing” approach as formulated in Van de Geer et.al
(2014) Let w* = (8*,7* )T € R and W = (Z,X) € R™ P+, The
debiased estimator is then defined & = & + IpW ' (Y — W#)/n

* Wald test rejects the hypothesis whenever |71| > ®7'(1 — a/2)/v1.

Theorem

In the above setup, we have liMn—oo P (|71 > ¢7'(1 — a/2)/v/n) = F(a, a),
where F(a,a) =2 =20 [0 (1— 2) /V1+a7].



REJECTION PROBABILITY

Figure: Plot of the asymptotic Type | error of Wald test

-10 <a <10

The horizontal axis denotes a and the vertical axis denotes F(a, a).



GOALS OF OUR WORK

% To develop sparsity-robust tests for the hypothesis (10)
We say that a test is sparsity-robust if the Type | error is asymptotically
bounded by the nominal level, regardless of whether or not ~* is sparse.

* Moreover, whenever the sparsity condition holds, our method is shown to
be optimal and matches existing sparsity-based methods in terms of Type
[l errors.

* We show minimax optimal power in certain dense models as well.

* Our methodology is based on the idea of exploiting the implication of the
null hypothesis.
* Instead of directly estimating the parameter under testing, we test a moment
condition that is equivalent to the null hypothesis.
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A TRANSFORMATION

We observe that a pseudo-response V :=Y — Zf3, satisfies a linear model

V=Xy" +e, e=2(8" — Bo) +e.

* under Ho, X is uncorrelated with the error e
* under H;, e might have correlation with X through Z.

We formally introduce a model to account for the dependence between X
and Z:
Z=X0" +u, i=1...,n. (3)

where 8% € RP is sparse and u € R" is independent of X with mean zero and
variance E(uu") = o2I,.



MOMENT CONDITION

We notice that
E [(v —Xy) T (Z - xe*)] /n = o2(8" — Bo).
Hence, solving the inference problem (10) is equivalent to testing
Ho : E [(v-x—y*)T(Z—xe*)] =0, (4)

Versus
Hi:E [(v—x»y*)T(z—xe*)] £ 0. (5)



SELF-ADAPTIVE ESTIMATION

* We define the following estimator

V(o) = argmin||y|ls
YERP
st INTXT(V = X9)]|eo < Moo (6)
IV = Xlloo < [IV]l2/ log’ n
n~VT(V = Xy) > pan~"|IVI3.

formy = n="2(1.1)d="(1 — p*wnq)\/maxgjgp n=13"0, xizj,
pn = 0.01/4/logn.

* 0, =argmax{o : 0 € Sy} and the set S, is defined as
S, = {o’ > llVl/vi s 150 > n 2V = X5(0)]l. > 0.50}. )

— When the estimation target fails to be sparse, the estimator is stable;
— when the estimation target is sparse, the estimator automatically achieves consistency
— does not require knowledge of the noise level.



CORRT TEST STATISTIC

We propose to consider the following correlation test (CorrT) statistic

T(f) = "V = X5) (2 = XB) (8)

00y

where
Go = |V = Xqll>/+/n and
Gy = 12— X8|/ V7.

Why does this work ?

We can show, without assuming sparsity of ~*, that
N2V =X3)"(Z - X8) = "2 (V= X3)" u+ 0p(1/logp[|6 — 67 ),

where under the null hypothesis, the first term on the right hand side has
zero expectation and the second term vanishes fast enough.
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LINEAR TESTING

Consider a high dimensional linear regression setting,

Y=XB8" +e. (9)

We focus on the problem of testing linear combinations of the model
parameter, namely the following hypothesis:

Ho:a' 3" = go, versus Hi:a' 8" +# g. (10)

Sparsity assumption: ||allo :=?? and ||3*||o :=77



PRIOR KNOWLEDGE OF Xy

Let Qx = 3, .
For each of the features x; € RP consider the following decomposition:

X; = az; + w;

7 = _g Tx-
T \aT%a '

.
aa’'
W= [Hp a aTﬂxa} !
Notice that az; can be viewed as the projection of x; onto the vector a -
taking into account Qx, hence extracting information in x; regarding the null
hypothesis.

with

and

Now, we see that the original model can be reparametrized as
yi=z(@'B)+w B8 +s,

which we refer to as restructured regression. 1



MOMENT CONDITION AND THE TEST

We observe that
Elz(yi — z80)] = ElZ/(a" 8" — 20)]
Hence, the original null is equivalent to the new null of the following kind

E[zi(yi — 2g)] = 0.

The test statistic then takes a simple form
n="2 30 ziyi — zi8o)
\/n‘1 YLz — z8)?

Remark

The novel methodology consists of two-stages. At the first stage, our
procedure establishes a data-driven feature decomposition based on the
structure of the null hypothesis directly. At the second stage, only “a
moment condition” of the restructured regression is tested.



WHAT IF Xy IS UNKNOWN

First, we pretend that £x = I, and consider

Zj = e Xi, Wi = PT 3Ta Xi

Although the decomposition x; = azi + w; still holds, features z; and w; might
be highly correlated.
However, by introducing a orthogonal matrix U, such that
T
- 22—yl

we can construct
and observe that

for



TEST

Introduce a feature model
Zi=W' " +u

where v* is the unknown parameter and u; are independent of w;.
Then, consider the moment

Ho : E (Zi = VTI‘T")/*)T (y‘ — Zi8o — \TVTﬂ*)] =0.
and develop a test
(z — WH) (y ~zg) — W?r)
Iz = WA lly — 280 — W |5

Th =
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ASSUMPTIONS

Condition

Let W = (Z,X) and w; = (z;,x") . The matrix 3w = E[W"W]/n € RP*P
satisfies that k1 < omin(Zw) < oma(Zw) < k. The vectors X, w are
centered with sub-Gaussian norms upper bounded by x3 and E|e;[**® < kq.
Moreover, logp = 0 (n‘s/(”‘” A n).

— For the designs, it is standard to impose well-behaved covariance matrices and
sub-Gaussian properties.

Condition
l7*|l2 < ks and sy = 0 (\/n/ logn/ log p), where so = ||8* 0.

— The assumption on s imposes sparsity in the first row of the precision matrix Xy, and
the rate for sg is stronger than the conditions in BCH and NL imposing o(v/n/ log p) and
in VBRD imposing o(n/ log p).



OBUSTNESS TO THE LACK OF SPARSITY

Theorem

Let Conditions 1 and 2 hold. Then under Hy
Va € (0,1), lim P <|Tn(ﬁo)| >o'(1— a/2)) = a.
n—o0
— Theorem 2 formally establishes that the new CorrT test is asymptotically exact in testing

B* = Bo. In particular, CorrT is robust to dense v* in the sense that even under dense
~*, our procedure does not generate false positive results.



SPARSITY-ADAPTIVE PROPERTY

We say that a procedure for testing the hypothesis (10) is sparsity-adaptive if
(i) this procedure does not require knowledge of s,

(ii) provides valid inference under any s., and

(iii) achieves efficiency with sparse v*.

We now show the third property, efficiency under sparse 4*. To formally
discuss our results, we consider testing Ho : 3* = By versus

Hin: 8% = Bo+h/vn. (1)

where h € R is a fixed constant.



SPARSITY-ADAPTIVE PROPERTY

Theorem
Let Conditions 1 and 2 hold. Suppose thats, = o(n/log(p V n)) and
ou/ae — ko for some constant ko > 0. Then, under Hy , in (11),

P(ITa(Bo)l > @71 = a/2)) = W(a, ko, h),

where W(h, ko,a) =2 — @ (&7 (1— a/2) + hko) — D (®7'(1 — @/2) — hro).

— Theorem 3 establishes the local power of CorrT. It turns out that this local power matches
that of existing sparsity-based methods, such as VBRD, NL and BCH, that are shown to be
efficient.



EXTREMELY DENSE MODELS

Theorem

Let Conditions 1and 2 hold together with logp = o(n). Let
x = E[xix'] € RP=D>*CP=N_ syppose that

27 [lo v/ log p = 0(1),

and with n — co and some k > 0, (v* " Zxy* 4+ 02)o; 2 — «. Then, under
Hp in (1),

lim Pg- (\Tn| > o1 - a)) — w(h, K, ),
n,p— oo

where W(h, k, ) is defined in Theorem 3.



EXTREMELY DENSE MODELS

x Forn,p — oo, v/logp/n = o(1) (i.e. n/p — 0), the Type Il error of the
proposed CorrT test, against alternatives that are larger than O(n~"/2),
converges to zero.

* If Xx = I, the condition || Zxvy*||e v/Nlogp = 0(1) is satisfied for all ~*
for which

7" llee = 0(1/+/nlogp), Iv*[l2 = O(v/n/ log p);
* If maxi<i<p || =x;ll = o(+/p/(nlog p)), we can consider all
Y =c/VP
with [Icle = O(1).

% Minimax testing of one coordinate (not the whole parameter) in dense
high-dimensional testing is possible!

20



DENSE + SPARSE MODELS

Theorem

Let Conditions 1and 2 hold together with logp = o(n). Let
x = E[xix'] € RP=D>*CP=N_ syppose that

for #* and p* satisfying ||7*|lo = o(v/n/ logp), (w* " Bxp* + o2)o;? — & and
[|Zxp*]|0 /N log p = 0(1) for some k > 0 as n — oo. Then, under Hy in (11),

lim_ps- (\Tn| > o7 (1- a)) = W(h, s, ),

where W(h, k,a) is defined in Theorem 3.

21
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SETTING

LTD Light-tailed design: N(0, £(,)) with the (i, ]) entry of ¥, being pl' /I,

HTD Heavy-tailed design: each row of W is generated as z}[ju, where U € R"
contains i.i.d random variables of Student’s t-distribution with 3 degrees
of freedom normalized to have variance one. (the third moment does not
exist.)

The error term e € R" contains i.i.d random variables from either N(0, 1)
(light-tailed error, or LTE) or Student’s t-distribution with 6 degrees of
freedom normalized to have variance one (heavy-tailed error, or HTE).

We set
2/vn 2<j<4
T =40 j > max{s, 4}
U(0,4)/4/n otherwise.
We test the hypothesis
Ho : w3 =2/v/n+h.

22



0w nnon

LTD + LTE, p =0

CorrT  Debias
0.03 0.05
0.06 0.05
0.09 0.09
0.01 0.03
0.08 0.12
0.07 0.16
0.05 0.29
0.04 0.35
0.07 0.54
LTD + HTE, p =0
CorrT  Debias
0.03 0.05
0.06 0.05
0.09 0.09
0.01 0.03
0.08 0.12
0.07 0.16
0.05 0.29
0.04 0.35
0.07 0.54

Table: Size properties (h = 0)

LTD + LTE, p = — 1

CorrT  Debias  Score
0.05 0.04 0.05
0.06 0.06 0.05
0.07 0.11 0.10
0.03 0.05 0.03
0.03 0.06 0.06
0.04 0.10 0.12
0.01 0.15 0.14
0.04 0.27 0.27
0.04 0.39 0.40
LTD + HTE, p = —1
CorrT  Debias  Score
0.04 0.04 0.02
0.11 0.06 0.06
0.05 0.06 0.05
0.03 0.04 0.03
0.06 0.11 0.10
0.07 0.16 0.15
0.05 0.33 0.26
0.05 0.43 0.41
0.06 0.51 0.50

HTD + HTE, p =0

CorrT  Debias
0.06 0.04
0.05 0.11
0.07 0.04
0.06 0.05
0.03 0.12
0.02 0.09
0.05 0.20
0.04 0.38
0.05 0.57
HTD + LTE, p =
CorrT  Debias
0.06 0.05
0.03 0.07
0.06 0.11
0.09 0.11
0.05 0.13
0.06 0.19
0.05 0.24
0.05 0.40
0.06 0.53

Score
0.02
0.03
0.04
0.03
0.04
0.09
0.21
0.38
0.53

0

Score
0.05
0.04
0.07
0.10
0.06
0.14
0.22
0.31
0.51



Power curves

Figure: Light-tailed errors
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TRANSNOAH BREAST CANCER DATASET

* Genome-wide gene expression profiling was performed using micro RNA
from biopsies from 114 pre-treated patients with HER2+ breast cancer.

* The complete data contains gene expression values of about 20000 genes
located on different chromosomes.

* BRCAT is a human tumor suppressor gene that is normally expressed in
the cells of breast and other tissue, where they help repair damaged DNA.

* Research suggests that the BRCA1 proteins regulate the activity of other
genes including tumor suppressors and regulators of the cell division
cycle.

* Moreover, it is believed that BRCAT may regulate pathways that remove the
damages in DNA introduced by the certain drugs.

25



Gene

Biological association

Test Statistic

CorrT  Debias Score
IGF2R1 breast cancer tumor suppressor -4.692 -4.285  -4.445
Nmi2 endogenously associated with BRCA1 ~ -4.239  -2.956  -2.669
RBBP4 breast cancer 4186 -3314 -2.806
NPMlA breast cancer -3.027 -2.112 -1.601
NAR525 breast cancer -4.163  -5.000 -4.983
B3GALNT1 lung cancer 1.151 2.082 2.065
C3orf62 lung cancer -1.274  -2.143  -2.139
LTB lung cancer -0.131  -2.107  -2.143
TNFAIP1 lung cancer 1231 2.181 2.118
CCPG1 prostate cancer -1.597 -2.154  -2.251
LRRIQ3 colorectal cancer -1.025  -2.480 -2.240
LOC100507537  bladder cancer -0.137  -1966 -1.135
ELOVL4A ataxia -1.354  -2.152  -2.136

26



EQUITY RISK PREMIA

* Study the equity risk premia during different states from 1980-2014. of the
economy

* The response is the excess return of the U.S stock market observed at
time t, covariates are a large number of macroeconomic variables
observed at time t — 1 (McCracken, M. W. and Ng, S. (2015)) and s; denotes
the NBER recession indicator; sy = 1 means that the economy is in
recession at time t.

27



EQUITY RISK PREMIA

4 | | | | | |
1980 1985 1990 1995 2000 20058 2010 2015
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Thank you for your attention!
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