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Machine Learning

Machine Learning methods give

computers the ability to learn without being explicitly
programmed.

(Arthur Samuel, 1959)

Actually: Fit statistical models to data by clever optimisation of
appropriate target functions
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Statistical Learning

An oxymoron, like “Statistical Science”

Either you learn, or you estimate
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Statistical Modelling

Too dull a term to attract any grant money

However: Explicitly acknowledges the underlying probabilistic
theory
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Statistical Models

What is a statistical model?

Y ∼ PY

What is a regression model?

Y | X = x ∼ PY |X=x
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Random Forest

What is a random forest (in general, not only B&C)?

Classical:

E(Y | X = x) = f (x), ∀x ∈ X

Here:

P(Y ≤ y | X = x) = PY |X=x(y) = f (y | x), ∀x ∈ X
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Parametric (!) Setup

Unconditional model for response

PY ,Θ = {PY ,ϑ | ϑ ∈ Θ}

Assumption: Regression model belongs to this family:

PY |X=x = PY ,ϑ(x)

Task: Estimate ϑ function
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Likelihood Contributions

“Learning” data (yi , xi ), i = 1, . . . ,N plus family PY ,Θ defines
likelihood function

`i : Θ→ R

`i (ϑ(xi )) gives the likelihood for observation i with candidate
parameters ϑ(xi )

Handle censoring and truncation appropriately here
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Adaptive Local Likelihood Estimators

ϑ̂N(x) := arg max
ϑ∈Θ

N∑
i=1

wN
i (x)`i (ϑ)

Conditioning works via weight functions wN
i (x) only
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Unconditional Maximum Likelihood

ϑ̂N
ML := arg max

ϑ∈Θ

N∑
i=1

`i (ϑ)
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Trees

X =
•⋃

b=1,...,B
Bb

wN
Tree,i (x) :=

B∑
b=1

I (x ∈ Bb ∧ xi ∈ Bb)

ϑ̂N
Tree(x) := arg max

ϑ∈Θ

N∑
i=1

wN
Tree,i (x)`i (ϑ)
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Forests

X =
•⋃

b=1,...,Bt

Btb for t = 1, . . . ,T trees

wN
Forest,i (x) :=

T∑
t=1

Bt∑
b=1

I (x ∈ Btb ∧ xi ∈ Btb)

ϑ̂N
Forest(x) := arg max

ϑ∈Θ

N∑
i=1

wN
Forest,i (x)`i (ϑ)
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OK, Done! Really?

These“nearest neighbor weights”have been used before, first in

– “bagging survival trees” (2004), in

– “conditional inference forests” (party(kit), since 2005) and
in

– “quantile regression forests” (quantregForest, since 2006)

with standard trees (CART- or CTree-like).

Unfortunately, there is a catch.

University of Zurich, EBPI BIRS, Banff, 2018-01-16 Transformation Forests Page 13



The Problem
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The Problem
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The Problem
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The Solution

We need splits sensitive to distributional and not just mean
changes.

Generic approach (“Distribution trees and forests”):

P(Y ≤ y | X = x) = PY ,ϑ(x)(y)

Here: Use transformation model

P(Y ≤ y | X = x) = Φ(aBs,d(y)>ϑ(x))
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Transformation Models

P(Y ≤ y | X = x) = Φ(aBs,d(y)>ϑ(x))

– aBs,d(y)>ϑ(x) is a smooth, monotonic Bernstein
polynomial of degree d

– d = 1 means PY |X=x = N (µ(x), σ2(x))

– d = 5 is surprisingly flexible

Why this parameterisation? No need to code the whole Johnson
& Kotz.
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Model-based Recursive Partitioning (MOB)

Core idea

– Fit parameters ϑ̂ML in unconditional model PY ,ϑ

– Compute individual gradient contributions (“scores”)

si =
∂`i (ϑ)

∂ϑ

∣∣∣∣
ϑ=ϑ̂ML

– Select predictor from x with strongest parameter instability
as indicated by highest association to si , i = 1, . . . ,N

– Find “best” binary split; repeat recursively

Implemented for many models, including (G)LM(M)s,
parametric survival, β-regression, spatial lag,
Bradley-Terry-Luce, various Item Response Theory models,
subgroup analyses, etc.
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Transformation Trees (TTree)

– Start with ϑ̂N
ML

– Search for parameter instabilities in ϑ̂N
ML as a function of x

using (a beefed-up version) of MOB

– Potentially find changes in the mean AND higher moments

– Forests: Aggregate these trees via adaptive local likelihood
estimation
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Transformation Forests (TForest)

P̂(Y ≤ y | X = x) = Φ(aBs,d(y)>ϑ̂N
Forest(x))

makes the forest “parametric” (one model for each x) with

– Forest likelihood

– Prediction intervals

– Likelihood-based variable importance

– Parametric bootstrap

– . . .

and applicable to censored and truncated data.

University of Zurich, EBPI BIRS, Banff, 2018-01-16 Transformation Forests Page 22



Swiss Body Mass Index Distributions

2012 survey (N = 16427) in Switzerland
Explain conditional distribution of BMI given

– Sex,

– Smoking status,

– Age,

– Education,

– Physical activity,

– Alcohol intake,

– Fruit and vegetable consumption,

– Region, and

– Nationality.
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BMI by Sex and Smoking

BMI
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Transformation Tree
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Transformation Forest: Variable Importance

Mean Decrease
Log−Likelihood
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Log-likelihood: −42520.18
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Transformation Forest: Partial Deciles
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More Complex Models

For example: Subgroup analysis, stratified / personalised
medicine, ...

Conditional transformation model

P(Y ≤ y | treatment,X = x) = FZ (aBs,d(y)>ϑ(x)− β(x)I (treated))

– Both the “intercept function” aBs,d(y)>ϑ(x) and

– the treatment effect β(x) may depend on x

– FZ () = 1− exp(− exp()) makes β a log-hazard ratio

– Include β̂ in search for parameter instabilities
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Stratified Medicine

Partition log-hazard ratio β from a fully parametric Cox model

P(T > t | treatment) = exp(− exp(aBs,d(t)>ϑ− βI (treated))

for a randomised controlled clinical trial on hormonal treatment
of breast-cancer patients

> library("tram") ### R-forge/ctm

> cmod <- Coxph(ctime ~ horTh, data = GBSG2)

> library("trtf") ### CRAN

> tmod <- trafotree(cmod,

+ formula = ctime ~ horTh | .,

+ data = GBSG2)
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Stratified Medicine
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Discussion

– The “two cultures” of statistical modelling come closer

– With Y = BMI, rain, house prices, survival time etc.

Ê(Y |X = x) = f̂ (x) = x>β̂

not interesting (or even harmful)

– PY ,ϑ̂(x) more informative

– Flexibility (non-linear interactions) of B&C random forests
preserved

– Simplicity of B&C random forests preserved

– Large sample behaviour?

– High dimensional?
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Y ~ N(µ(x), σ2(x))
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Resources

– “Transformation Forests”, trtf,
https://arxiv.org/abs/1701.02110,

– “Top-Down Transformation Choice” (with BMI example),
SM, trtf, http://arxiv.org/abs/1706.08269

– “Most Likely Transformations”, SJoS, mlt, tram,
http://dx.doi.org/10.1111/sjos.12291

– “Conditional Transformation Models”, JRSS-B,
http://dx.doi.org/10.1111/rssb.12017

– “Model-based Recursive Partitioning”, JCGS, partykit
http://dx.doi.org/10.1198/106186008X319331,

– “Model-based Recursive Partitioning for Subgroup
Analyses”, IJB, model4you
http://dx.doi.org/10.1515/ijb-2015-0032

– “Model-based Forests”, SMMR, model4you,
http://dx.doi.org/10.1177/0962280217693034
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Y ~ N(µ(x), σ2(x))
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Low and High: 10% Quantile
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Y ~ N(µ(x), σ2(x))
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Low and High: 90% Quantile
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