University of
Zurich*™

EBPI Epidemiology, Biostatistics and Prevention Institute

Transformation Forests

Torsten Hothorn

Joint work with Achim Zeileis, Lisa Schlosser and Heidi Seibold

BIRS, Banff, 2018-01-16



Machine Learning

Machine Learning methods give

computers the ability to learn without being explicitly
programmed.

(Arthur Samuel, 1959)

Actually: Fit statistical models to data by clever optimisation of
appropriate target functions
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Statistical Learning

An oxymoron, like “Statistical Science”

Either you learn, or you estimate
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Statistical Modelling

Too dull a term to attract any grant money

However: Explicitly acknowledges the underlying probabilistic
theory
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Statistical Models

What is a statistical model?

Y ~ Py

What is a regression model?

Y | X=x~Pyjx=x
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Random Forest

What is a random forest (in general, not only B&C)?

Classical:
E(Y | X=x)=f(x), ¥xeX
Here:

P(Y <y [ X=x)=Pyx=(y) = f(y | x),
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Parametric (!) Setup

Unconditional model for response

Py,@ = {Pyﬁ ‘ J e 9}

Assumption: Regression model belongs to this family:

Pyix=x = Py 9(x)

Task: Estimate 99 function
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Likelihood Contributions

“Learning” data (y;,x;),i =1,..., N plus family Py g defines
likelihood function

f,’i@—)R

£;(V¥(x;)) gives the likelihood for observation i with candidate
parameters 9(x;)

Handle censoring and truncation appropriately here

University of Zurich, EBPI  BIRS, Banff, 2018-01-16 Transformation Forests Page 8



Adaptive Local Likelihood Estimators

A

N(x) := arg max wlV(x)¢;
U7 (x) := arg m: Z (x)£i(9)

i_

Conditioning works via weight functions W,-N(x) only
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Unconditional Maximum Likelihood

I, = arg maxZE,-('t?)
de0 =
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Trees

X= U Bp
b=1...B
B
W'II'Yee,i(x) = Z I(X € Bb AXj € Bb)
b=1
N
9N (x) = arg maxz W%Vree,,-(x)ﬁ,-(ﬂ)
%€ T
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Forests

X= U Bwfort=1,...,T trees

b=1,...,B:
T B:
Wlé\cl)rest,i(x) = Z I(x € B A Xj € Byp)
t=1 b=1
4N .
1'9Forest(x) = argeng)axz WForest I( )K (19)

I'_
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OK, Done! Really?

These “nearest neighbor weights” have been used before, first in
— “bagging survival trees” (2004), in

— “conditional inference forests” (party(kit), since 2005) and
in

— “quantile regression forests” (quantregForest, since 2006)
with standard trees (CART- or CTree-like).

Unfortunately, there is a catch.
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The Problem

0.0 0.2 0.4 0.6 0.8 1.0
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The Problem

— Quantile Regression Forest
— — Transformation Tree  *

o - — Transformation Forest .~ 0% Y

0.0 0.2 0.4 0.6 0.8 1.0
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The Solution

We need splits sensitive to distributional and not just mean
changes.

Generic approach (“Distribution trees and forests”):
P(Y <y [X=x)=Pyyx(y)

Here: Use transformation model

P(Y <y | X=x) = ®(apsd(y) 9(x))
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Transformation Models

P(Y <y | X =x) = ®(agsd(y) 9(x))

— agsd(y) "Y(x) is a smooth, monotonic Bernstein
polynomial of degree d

- d =1 means Pyx_, = N(u(x),0%(x))
— d =5 is surprisingly flexible

Why this parameterisation? No need to code the whole Johnson
& Kotz.
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Model-based Recursive Partitioning (MOB)

Core idea

— Fit parameters 1A9M|_ in unconditional model Py

Compute individual gradient contributions (“scores”)

_04i(9)

S; =

oY S=DnL

Select predictor from x with strongest parameter instability
as indicated by highest association to s;,i=1,..., N

— Find "best” binary split; repeat recursively
Implemented for many models, including (G)LM(M)s,
parametric survival, 5-regression, spatial lag,

Bradley-Terry-Luce, various Item Response Theory models,
subgroup analyses, etc.
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Transformation Trees (TTree)

Start with Oy,

Search for parameter instabilities in 90y, as a function of x
using (a beefed-up version) of MOB

Potentially find changes in the mean AND higher moments

Forests: Aggregate these trees via adaptive local likelihood
estimation
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Transformation Forests (TForest)

B(Y <y | X =x)=0(@8sa(y) Dforest(x))

makes the forest “parametric” (one model for each x) with

Forest likelihood

Prediction intervals

Likelihood-based variable importance

— Parametric bootstrap

and applicable to censored and truncated data.
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Swiss Body Mass Index Distributions

2012 survey (N = 16427) in Switzerland
Explain conditional distribution of BMI given

— Sex,

Smoking status,

- Age,

Education,

Physical activity,
Alcohol intake,

— Fruit and vegetable consumption,

Region, and

Nationality.
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BMI by Sex and Smoking
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Transformation Tree
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Transformation Forest: Variable Importance

Sex

Age

Education
Physical activity
Smoking
Alcohol intake
Nationality
Region

Fruit and vegetables

T T T T T
200 400 600 800 1000
Mean Decrease
Log-Likelihood

Log-likelihood: —42520.18
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Transformation Forest: Partial Deciles

BMI
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More Complex Models

For example: Subgroup analysis, stratified / personalised
medicine, ...

Conditional transformation model

P(Y <y | treatment, X = x) = Fz(aps 4(y) 9(x) — A(x)l (treated))

Both the “intercept function” ags 4(y) ' 9(x) and
the treatment effect §(x) may depend on x

Fz() =1 — exp(—exp()) makes § a log-hazard ratio
Include J in search for parameter instabilities
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Stratified Medicine

Partition log-hazard ratio 8 from a fully parametric Cox model
P(T > t | treatment) = exp(— exp(aps.q(t) ' ¥ — Bl(treated))

for a randomised controlled clinical trial on hormonal treatment
of breast-cancer patients

> library("tram") ### R-forge/ctm

> cmod <- Coxph(ctime ~ horTh, data = GBSG2)

> library("trtf") ### CRAN

> tmod <- trafotree(cmod,

+ formula = ctime ~ horTh | .,
+ data = GBSG2)
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Stratified Medicine
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Discussion

— The "two cultures” of statistical modelling come closer
— With Y = BMI, rain, house prices, survival time etc.
B(YX=x)=Ff(x)=x'73
not interesting (or even harmful)

- ]P’Y’@(X) more informative

Flexibility (non-linear interactions) of B&C random forests
preserved

Simplicity of B&C random forests preserved

Large sample behaviour?

High dimensional?
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Low and High

¥ = N(u(x). °(x))
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Resources

— "Transformation Forests”, trtf,
https://arxiv.org/abs/1701.02110,

— “Top-Down Transformation Choice” (with BMI example),
SM, trtf, http://arxiv.org/abs/1706.08269

— “Most Likely Transformations”, SJoS, mlt, tram,
http://dx.doi.org/10.1111/sjos.12291

— “Conditional Transformation Models”, JRSS-B,
http://dx.doi.org/10.1111/rssb.12017

— “Model-based Recursive Partitioning”, JCGS, partykit
http://dx.doi.org/10.1198/106186008X319331,

— “Model-based Recursive Partitioning for Subgroup
Analyses”, 1JB, modeldyou
http://dx.doi.org/10.1515/ijb-2015-0032

— “Model-based Forests”, SMMR, model4you,
http://dx.doi.org/10.1177/0962280217693034
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Low

and High: 10% Quantile

Y~ N(u(x), 6*(x))
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Low and High: 90% Quantile

Y~ N(u(x), 6*(x))
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