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Two scenarios

FLUID 1 p'

Figure: Two fluids: internal waves

» Muskat equation Global existence with arbitrarily large slope.
with O. Lazar. arXiv 2018
» Euler equations Stationary solutions with a splash singularity

with A. Enciso and N. Grubic. To appear in arXiv
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The Muskat problem (Muskat (1934), Saffman & Taylor (1958) )
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In this talk:

» Scenario in R?
» Finite energy

» No surface tension
> =i
‘We consider:

1. Open curves vanishing at infinity

lim (z(a, 1) = (a,0)) =0,

a—r 00
2. Periodic curves in the space variable
(o + 2km, 1) = z(«, 1) + 2k7(1,0).

3. Closed curves = Unstable regime.



Incompressible porous media equation

pr+u-Vp=0
Bu=—-Vp—(0,8p)

Two-dimensional mass balance {
divu =0

equation in porous media (2D IPM)




Incompressible porous media equation

Two-dimensional mass balance Z’;_u _gp i (()O )
equation in porous media (2D IPM) div u_— 0 P '8P

Remark: let y =k =g =1

22
> u(x) = 5PV o (2237, ) plx — v)dy — 5 (0, p(x)) ,

> ol (0) = lpllr(0)  p e [1,00] = [Jull(t) < C p e (l,00)

> (0, +u-V)Vip= (Vu)Vip.



Muskat: Contour equation

We consider

plx,t) = { Zz ié 328

with

oV (1) = {z(a, 1) = (z1 (v, 1), 22(, 1))

a € R}
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PV/R

u(x, [) = b |X*Z(5,t)|2 8az2(ﬁat)d67

for x # z(«, 1).
[Jull 2 (2) < oo



Muskat: Contour equation

It yields

Py py [2l0) -2 (5)2 (Oaz() — Dpz(B))dB.

27 r |z(a) — z(B)

z(a)




Contour equation as a graph

» The equation for a graph z(a, 1) = («, f(a, 1)).

i P (a — B)(Oacx — 9pP)
T o /R(a—ff)zﬂf(a) ff(ﬂ))zdﬁ
0= 0
P —p' [ (= B)(Duf (@) — Daf(B))
fle) == /R (a—B)*+ (f(@) ff(ﬂ))zdﬁ

with initial data

Z](Ot, 0) =

(@, 0) =f(a, 0) = fo().



The linearized equation

o =LA 00, A= (A

Fourier transform:

~ N |
FHgn) = oty exp (= 55 lelr).

> % > p! stable case,

> p? < p! unstable case.



Local existence theory
For a general interface
oV (1) = {z(a,t) = (z1(a, 1), 22(ev, 1)), a€R}
after taking k derivatives (k > 3) it can be shown that

Oaz1(a, 1)
|0az(a, 1)]?

o(a,t)=R-T

o0k z(a,t) = — (p* — p") AdEz(a,t) + ot

Thus we can distinguish three regimes:

» Stable regime: o > 0 = the denser fluid is always below.
The Muskat problem is locally well-posed in time in Sobolev’s spaces.
» Fully unstable regime: o < 0 = the denser fluid is always above.

The Muskat problem is ill-posed in Sobolev’s spaces.

» Partial unstable regime: ¢ has not a defined sign = there is a part of
the interface where the denser fluid is above.



Energy estimates for the stable regime p* > p!

For k = 3:

%Hﬂ 25 = — / o ()02 () A2 f(a)da + Controlled Quantities
Then, since o > 0, yields

- / o()Of () ABf(0) < — 1 / <a>A(aif<a>)2da

<—7/AO'

d m
S IFIls < CIFlg:

Finally we obtain



Local existence results in the stable regime

» D.C. and F. Gancedo (2007). Local existence in H* (and ill-posedness
for p* < ph).

» A. Cheng, R. Granero and S. Shkoller (2016). Local existence in H?.

> P. Constantin, F. Gancedo, R. Shvydkoy and V. Vicol (2017). Local
existence in W27 for p>1.

» B-V. Matioc (arxiv). Local existence in H 3te,



Conserved quantities in the stable regime: (z,z) = (a,f(e, 1))

> [fanda = [ fia)da.
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Conserved quantities in the stable regime: (z,z) = (a,f(e, 1))

> /f(a’l)da:/fo(oc)da,

» Maximum principle for the L*—norm

el + [ [ [ ros (1 ¥ (W)) dods = [l e
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Conserved quantities in the stable regime: (z,z) = (a,f(e, 1))

> /f(a’l)da:/fo(oc)da,

» Maximum principle for the L*—norm

el + [ [ [ ros (1 + (W)) dods = |l

Compare with the linear case

W0l + [ [ (P2 dads = 1l

1
= A W= A2F ()12

e (1 + (W)) dodB < CIIf (0|

But



Conserved quantities in the stable regime: (z,z) = (a,f(e, 1))

> [ fanda= [ o

» Maximum principle for the L*—norm

el [ [ [ (1 ¥ (W)) dod8 = [l e

» Maximum principle: ||f]|zoe (#) < ||f||zo= (0).

PeriOdiC case:
2 OdOé Lo 2 OdOé L>ée .

Ifollz==
1+Ct

Flat at infinity: ||f||ze (£) <



Conserved quantities in the stable regime: (z,z) = (a,f(e, 1))

v

/f(a, 1)da = /fo(a) da.

» Maximum principle for the L*—norm

el [ [ [ (1 ¥ (W)) dod8 = [l e

» Maximum principle: ||f]|zoe (#) < ||f||zo= (0).

PeriOdiC case:
2 OdOé Lo 0 2 OdOé L>ée .

- Wl

Flat at infinity: ||f||ze (£) < 1+Ct

» Maximum principle: If ||fa ||z (0) < 1 then ||fo||zoc () < |[fallzee (0).



Global existence for ||0.fo|ro@) < 1

» D.C. and F. Gancedo (2007). Global existence and gain of analyticity from a
perturbation of flat interface.
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» S. Cameron (arxiv2017). Global classical solutions if ||Oafo||Lc ) < 1.



What happens if ||0,/o]|z~®

) > 1 (with finite energy)?

» Numerical simulations of Turning (i.e. shift of stability) by Maria

Lépez-Fernandez
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What happens if |[0.fo||r~®) > 1 (with finite energy)?

» Numerical simulations of Turning (i.e. shift of stability) by Maria

Lépez-Fernandez

55

[

> Theorem (2012): 3fy € H* and a T* st limy—7+ ||9af]|1o0 (r) = oo (joint work
with A. Castro, C. Fefferman, F. Gancedo and M. Lépez-Fernandez).



What happens if |[0.fo||r~®) > 1 (with finite energy)?

» Numerical simulations of Turning (i.e. shift of stability) by Maria

Lépez-Fernandez

» Theorem (2012): 3fy € H* and a T* st limy—7+ || Oaf]|1 (»)

= oo (joint work

with A. Castro, C. Fefferman, F. Gancedo and M. Lépez-Fernandez).

» Numerical evidence of turning with ||Gafo||= = 22 by J. Gémez-Serrano.

Is there a turning for ||Oafo||r~ = 1+ €?



What happens after Turning?

> In the stable regime a solution of Muskat becomes immediately real-analytic
and then passes to the unstable regime in finite time. Moreover, the
Cauchy-Kowalewski theorem shows that a real-analytic Muskat solution
continues to exist for a short time after the turnover.
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What happens after Turning?

> In the stable regime a solution of Muskat becomes immediately real-analytic
and then passes to the unstable regime in finite time. Moreover, the
Cauchy-Kowalewski theorem shows that a real-analytic Muskat solution
continues to exist for a short time after the turnover.

» Breakdown of smoothness: There exist interfaces of the Muskat problem such
that after turnover their smoothness breaks down (is not C*). Joint work with
A. Castro, C. Fefferman and F. Gancedo.

» Double shift of stability: Turning stable-unstable-stable (also
unstable-stable-unstable). Joint work with J. Gomez-Serrano and A. Zlatos.
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Global existence for arbitrarily large slope

» F. Deng, Z. Lei and F.Lin (2017). Global existence for arbitrarily large
monotonic initial data (Not in L?).

» S. Cameron (2018 updated version of the arxives): Global existence for

(supfo(x)) (supy — fo(y)) <1

Theorem
Assume fo € H*? with ||fo|;5/2 small enough, then, there exists a unique strong
solution f which verifies f € L> ([0, T], H*'*) N L*([0, T}, H>/?), for all T > 0.

Joint work with O. Lazar.



Global existence for arbitrarily large slope: proof

Main steps of the proof:

» The proof is based on the use of a new formulation of the Muskat equation that
involves oscillatory terms as well as a careful use of Besov space techniques.

>
fi(t,x) = pPV/aAof/ =9 cos(6Aqf) db da

£(0,x) = fo(x).
where A.f = fi(x”)_‘g"_a”).



Global existence for arbitrarily large slope: proof

» A priori estimates in B2

1
56,|lf||,%,3/2 /fox /a Aof / = cos(8Af(x)) db dov dx

- /Hf:rx /(aonj) / b’ sin(6Af(x)) dé da dx
0
= h+Db

‘We can estimate
2
L < ([fll72 f 12

and the most singular term is /;

K2
]S WP 2 + W) = e + s I e

where K = fo||L°°L°°~



Global existence for arbitrarily large slope: proof

» A priori estimates in B2

1
56,|lf||,%,3/2 /fox /a Aof / = cos(8Af(x)) db dov dx

- /”fox /(&Aoj) / be° sin(dAqf(x)) dé do dx
= L+DL ’
We can estimate
L] < W1l 112

and the most singular term is /;

K2
]S WP 2 + W) = e + s I e

where K = fo||L°°L°°~
» Then

1
S0 s + T e < O (v + 2

1—|—K2



Global existence for arbitrarily large slope: proof

» Similar a priori estimates in H° 2.
Lemma
Let T > 0 andfy € H'* 0 H'? so that ||fo| ;52 < C(||fo.x||z>< ), then we have

T
™ 2
Flls/2(T)  + —/||-,ds
Wsr + 5 [ Wl

<

T
2 2
S Wil + (Ve ooy + W qominrs) [ 11
0

where M is the space-time Lipschitz norm of f.



Two fluids. Euler equations

In each domain, the fluid flow is governed by the incompressible, irrotational Euler equations;
that is, the respective velocities &/ and the corresponding pressures p/ satisfy

(O + 1 - V)i = =Vp —gpjer in (1a)
V=0 and V=0 in @ (1b)

p' —p*=—0K on 0Q (1c)

(Oz— 1) (Baz)t =0 on 09, (1d)

where 9Q(1) = {z(o, 1) = (z1(a, 1), 22(0, 1)) : o € R}



Free boundary problem: one fluid

Figure: Turnover and a Splash singularity.

A. Castro, D.C., C.Fefferman, F. Gancedo and J. Gémez-Serrano (2011)



Main ideas of the proof of the Splash

» The water wave equations are invariant under time reversal.

» We can choose initially the normal component of the velocity on the
interface.

» Solving the equations backwards in time (prove local existence).




Further Results

» Splat

A Variant of the Splash:
SPLAT!

i

Attime t,, the interface self-intersects along
anarc, but u and 0Q are otherwise smooth.

» Surface tension
» Non trivial vorticity by D. Coutand and S. Shkoller (2012)

» Viscosity (see also D. Coutand and S. Shkoller)



Squeezing a fluid

Water region

» Can we squeeze an incompressible fluid?



Two fluids

» Two incompressible fluids with nonzero densities cannot form a splash.
Ch. Fefferman, A. Ionescu, V. Lie (see also D. Coutand and S. Shkoller)

Sketch of Proof: Consider the vorticity V x u(x, 1) = w(c, 1)d(x — z(a, 1)).

> If
08z(a,1)| (k=0,1,2,3,4)

and
max{|0%u! (x,1)| : x € Q'(r),|8] <3

remain bounded as 1 — T, then |w(c, #)| remains bounded as r — T,
because w satisfies a variant of Burgers equation.

» If |w(«, 7)| remains bounded as ¢t — T, then, because the interface

moves with the fluid, the function F(¢) = Cci() satisfies

dF
|E| < Const.|F|In(|F) +2)

Hence, F(t) remains bounded as t — T, so the splash cannot form.



Stationary Splash solutions with two fluids

» Theorem: Let us fix the density of the second fluid p, > 0. Then for
any sufficiently small upper fluid density p; > 0 and g > 0, there is
some positive surface tension coefficient for which there exists a
stationary solution two-fluid Euler equations such that the interface 052
has a Splash singularity. The regularity of 92 and w is C>® and C*
with 0 < o < %

@ p1=€>0

Fluid p2>0

Figure: Two fluids: internal waves

The idea of the proof is to perturb a family of exact stationary water
waves introduced by Crapper (1957). Joint work with A. Enciso and N.
Grubic.



Stationary solutions

In each domain, the fluid flow is governed by the stationary, incompressible,

irrotational Euler equations; that is, the respective velocities 1/ and the
corresponding pressures p/ satisfy

pi(V - V)W = =Vp —gpje; in Q
V-vV=0 and VX"V =0 in Q

jy
V. (9,2)7 =0 on 09Q,
pl —p*=—0K on ON.

We assume that the interface satisfies periodicity conditions
z(a+27m) =zi(a) + 27, z(a+27) =2(a)

and is symmetric with respect to the y-axis:

z(-a)=-z(a), z2(-a)=2n(q).

(2a)
(2b)
(20)
(2d)



Stationary solutions

To fix the parametrization, we use the hodograph transform with respect to
the lower fluid. Then, as song as there is no self-intersections: A stationary
solution of the two-fluid system is reduced to finding 2m-periodic functions
w(a) and z(a) — (o, 0) satisfying

2|10a2)*M(z) + cw(w —2) =2, (3a)
2BR(z,w) - Oaz + w = 2, (3b)
BR(z,w) - 0tz =0, (o)

where BR and M are given by

Ly [ G =gt
BR(z,w) = 27TPV/]R 2o 1) — 2B )] (a, 1)d

. 2p,
P2 — P1

qK(z) —2gz2 + 1,

q:= 2, e:= -2 K(z) is the curvature of the interface.



Stationary solutions when e = 0 and g =0

» The system decouples and we recover the pure capillary waves
(Levi-Civita 1925).

» This problem admits a family of exact solutions depending on the
parameter g. In fact, Crapper has shown that the family of functions

4i

are solutions. Parameter A depends on ¢ via

1442
1= 1-ar

and it actually suffices to consider A > 0, since the transformation
A — —A corresponds to a translation « — o + 7.

» We solve for w by inverting

2BR(zp,w) - Opza + w =2



Stationary solutions

Vacuum

Splash point

o

Figure: Interface at different values of the parameter A.

For A = Ay, the curve z4 () exhibits a splash, while for A slightly larger
transverse.

than Ay the curve intersects at exactly two points, and the intersection is

[m] = = =

DA



Invert the operator w + 2BR(z,w) - 0a2

» G. Baker, D. Meiron and S. Orszag (1982): Let z € H* and assume z is
a curve without self-intersections. Then A(z)(w) = 2BR(z,w) - 0az
defines a compact linear operator

A(z) : H' — H'

whose adjoint 7%, acting on w, is described in terms of the Cauchy
integral of w along the curve z whose eigenvalues are strictly smaller
than 1 in absolute value. In particular, the operator 1 + A(z) is
invertible.

» A. Cordoba, D.C. and F. Gancedo (2010): Control of the norm of the
inverse operators (I — 7.4(z))~!, |n| < 1 in terms of the chord-arc
condition and the regularity of z. The arguments rely upon the
boundedness properties of the Hilbert transforms associated to C'®
curves, for which we need precise estimates obtained with arguments
involving conformal mappings, Hopf maximum principle and Harnack
inequalities.




Results

By the Implicit function Theorem

» There are almost-splash stationary solutions to the Euler equations
with two fluids.

» The existence of stationary splash singularities for one fluid

Spiash point

©

Figure: At times t=0 and t=T>0.

DA



In the case of two fluids

¢ p1=€>0

Fluid p2>0

» When the Chord-arc fails there is difficulties to invert the operator
within the framework of the usual Sobolev spaces.

» V. Maz’ya developed techniques to treat the case of cusp domains
within the class of weighted spaces depending on the order of the cusp
1 where the interface approaches the splash point (cusp tip x = 0) as
(x, x!T#) with > 0.



In the case of two fluids

Let
wp(x) = [x|”

be the weight function for 5 € R and x in some interval / € R containing the
origin. Then for k € N

ue W[I,‘ﬁ D= way(x)Ouel?, j< k.
We adapted Maz’ya technique to show that 1 + A(z) actually has values in a
smaller Banach space; i.e. we show
> 1+A(z): Wp{/3 — X3, continuous on a closed subspace Xg ,, C Wplﬁ,
> 1+ .A(z): W, 5 — X, invertible by using conformal maps.

Finally, after adjusting the Banach space for z, we show that we can use the
implicit function theorem on the perturbed equations defined on these new
weighted Sobolev spaces.



Motivation: work in progress

Vacuum Vacuum

Figure: At times t=0 and t=T>0.

» Goal: to prove local existence starting from a Splash

» Obtain a priori estimates for a carefully chosen energy functional
within the weighted Sobolev spaces.

» Choose an initial data that opens the Splash.

Joint work with A. Enciso, C. Fefferman and N. Grubic.
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