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Abstract:

I will report some recent results about both stationary and non-stationary Stokes systems with variable

coef�cients. Applications to the Navier-Stokes equations and the construction of Green's functions will

also be presented.

Based on joint work with Doyoon Kim (Korea University), Jongkeun Choi (Brown University), and

Tuoc Phan (U of Tennessee).
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The classical linear Stokes system:

ut −∆u+∇p = f, div u = g,

where u is a vector-valued function, p is a scalar function, and f is the external force.

Relation to the Navier-Stokes equations.

1. We can view the nonlinear term as external force:

ut −∆u+∇p = −u · ∇u, div u = 0.

2. We can also rewrite the equation into the form

ut −Di((δij + dij)Dju) +∇p = 0, div u = 0,

where dij is a skew-symmetric matrix-valued function and satis�es

∆dij = Djui −Diuj .
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Outline:

I. Lp and Dini type estimates for stationary Stokes systems.

II. A construction of Green matrices for stationary Stokes systems.

III. Lp estimates for non-stationary Stokes systems, with applications.
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I. Lp and Dini type estimates for the stationary Stokes system.

The classical stationary Stokes system in smooth domains∆u+∇p = f in Ω

div u = g in Ω

with the non-homogeneous Dirichlet boundary condition u = φ on ∂Ω was studied by Lady�zenskaya

(1959), Sobolevski�� (1960), Cattabriga (1961), Vorovi�c and Judovi�c (1961), and Amrouche and Girault

(1991).

Theorem. (Cattabriga, 1961) Let Ω be a bounded C2 domain in R3. Then

∥Du∥Lq(Ω) + ∥p∥Lq(Ω) ≤ N∥f∥W−1
q (Ω) +N∥g∥Lq(Ω) +N∥φ∥

W
1−1/q
q (∂Ω)

.

The proof is based on the explicit representation of solutions using fundamental solutions.
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• Amrouche and Girault (1991): bounded C1,1 domain Ω ⊂ Rd, for any d ≥ 2.

Their proof is based on a result by Agmon, Douglis, and Nirenberg (1964) for elliptic systems together

with an interpolation argument.

• Galdi, Simader, and Sohr (1994): a bounded Lipschitz domain with a suf�ciently small Lipschitz

constant.

• Fabes, Kenig, and Verchota (1988): arbitrary Lipschitz domains with the range of q restricted,

by using the layer potential method and Rellich identities.

• Subsequent work by Z. Shen, Brown-Shen, M. Mitrea-Taylor, M. Mitrea-Wright, Geng-Kilty.
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We are interested in the Stokes system with variable coef�cients:Lu+∇p = f +Dαfα in Ω,

div u = g in Ω,

where Ω ⊆ Rd and L is a strongly elliptic operator, given by

Lu = Dα

(
AαβDβu

)
, Aαβ = [Aαβ

ij ]di,j=1

for α, β = 1, . . . , d.

Such type of systems were considered by Giaquinta and Modica (1982) for suf�ciently regular.

Motivations:

a. inhomogeneous �uids with density dependent viscosity;

b. equations which describe �ows of shear thinning and shear thickening �uids with viscosity depending on

pressure;

c. Navier-Stokes system in general Riemannian manifolds.
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Conditions.

The coef�cients Aαβ are bounded and satisfy the strong ellipticity condition, i.e., there exists a constant

δ ∈ (0, 1) such that

|Aαβ | ≤ δ−1,
d∑

α,β=1

ξα ·Aαβξβ ≥ δ
d∑

α=1

|ξα|2

for any ξα ∈ Rd, α = 1, . . . , d.

Aαβ are measurable in x1. In particular, they may have jump discontinuities.

Thus, the system can be used to model, for example, the motion of two �uids with interfacial boundaries.

This type of coef�cients was �rst considered by Krylov-Kim (2007) for non-divergence form elliptic

equations with measurable coef�cients.
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Main results.

Theorem A. (D.-Kim, 2017) Let q ∈ (1,∞), and let Ω be either Rd or Rd
+ and Aαβ = Aαβ(x1).

If (u, p) ∈ W 1
q (Ω)

d × Lq(Ω) satis�es
Lu+∇p = Dαfα in Ω,

div u = g in Ω,

u = 0 on ∂Ω in case Ω = Rd
+,

where fα, g ∈ Lq(Ω), then we have that

∥Du∥Lq(Ω) + ∥p∥Lq(Ω) ≤ N
(
∥fα∥Lq(Ω) + ∥g∥Lq(Ω)

)
.
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We also considered Stokes system in a bounded Lipschitz Ω with a small Lipschitz constant.

In this case, we allow coef�cients not only to be measurable locally in one direction (almost perpendicular

to the boundary of the domain), but also to have small mean oscillations in the other directions.

Theorem B. (D.-Kim, 2017) Let q ∈ (1,∞),K > 0, and let Ω be bounded (diamΩ ≤ K). Then under

the above assumptions, for (u, p) ∈ W 1
q (Ω)

d × Lq(Ω) satisfying (p)Ω = 0 and
Lu+∇p = Dαfα in Ω,

div u = g in Ω,

u = 0 on ∂Ω,

where fα, g ∈ Lq(Ω), we have that

∥Du∥Lq(Ω) + ∥p∥Lq(Ω) ≤ N
(
∥fα∥Lq(Ω) + ∥g∥Lq(Ω)

)
.

Moreover, for fα, g ∈ Lq(Ω) with (g)Ω = 0, there exists a unique (u, p) ∈ W 1
q (Ω)

d × Lq(Ω)

satisfying (p)Ω = 0 and the system.

Remark: For equations with VMO coef�cients, such result was obtained by Choi-Lee (2016).
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Idea of the proof.

1. The proof is based on pointwise sharp and maximal function estimates in the spirit of Krylov (2005).

Such estimates rely on the C1,α regularity of solutions to the homogeneous system.

2. Here, the main dif�culty is that because the coef�cients are measurable in x1, it is impossible to obtain

a Hölder estimate of the full gradientDu. To this end, instead of consideringDu itself, we estimate

certain linear combinations ofDu and p:

Dx′u and U := A1βDβu+ pe1.

3. For this, we apply the Caccioppoli inequality for the stationary Stokes system:∫
Br

|Du|2 dx ≤ N(R− r)2
∫
BR

|u|2 dx,

as well as the following key lemma.
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Lemma. Let 0 < r < R, and let ℓ be a constant.

a. If (u, p) ∈ W 1
2 (BR)

d × L2(BR) satis�es the homogeneous system inBR, thenDx′p ∈ L2(Br)

and ∫
Br

|Dx′p|2 dx ≤ N(R− r)−2

∫
BR

|Du|2 dx.

b. Similar boundary estimate holds.

4. Finally, in order to deal with the system in a Lipschitz domain, we apply a version of the Fefferman-Stein

sharp function theorem for spaces of homogeneous type, which was recently proved in D.-Kim (2015),

and employ a delicate cut-off argument, together with Hardy's inequality. The solvability follows from the

method of continuity.
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Weighted Lp estimates for stationary Stokes systems.

In a subsequent paper, we considered weighted Lp estimates for stationary Stokes systems in Reifenberg

�at domains.

Muckenhoupt weights: for any q ∈ (1,∞), let Aq = Aq(Ω) be the set of all nonnegative L1,loc

functions ω on Ω such that

[ω]Aq := sup
x0∈Ω,r>0

(
−
∫
Ωr(x0)

ω(x) dx

)(
−
∫
Ωr(x0)

(
ω(x)

)−1/(q−1)
dx

)q−1

< ∞.

Recall that Aq1 ⊂ Aq2 for q1 < q2.
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Theorem C. (D.-Kim, 2017) The result of Theorem A holds in the weighted space Lq,ω for any ω ∈ Aq .

Theorem D. (D.-Kim, 2017) The result of Theorem B holds in the weighted space Lq,ω for any ω ∈ Aq ,

when Ω is a bounded Reifenberg �at domains.

Remark of the proof: Instead of the method of mean oscillation estimates, we applied the level set

argument in the spirit of Caffarelli and Peral, as the method continuity does not work here.

For this, we also derived a reverse Hölder's inequality for stationary Stokes systems:

There exists q̃ > 2 such that(
|Dū|q̃

)1/q̃
Br(x0)

+
(
|p̄|q̃
)1/q̃
Br(x0)

≤ N
(
|Dū|2

)1/2
B8r(x0)

+N
(
|p̄|2
)1/2
B8r(x0)

+N
(
|f̄α|q̃

)1/q̃
B8r(x0)

+
(
|ḡ|q̃
)1/q̃
B8r(x0)

With Choi, we extended the results to Stokes systems with the conormal boundary condition.
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Dini type estimates.

With better regularity of the coef�cients and data, we obtain better regularity of solutions.

A partial Dini condition: We say that f is of partially Dini mean oscillation with respect to x′ inB4 if the

function ωf,x′ : (0, 1] → [0,∞) de�ned by

ωf,x′(r) := sup
x∈B4

−
∫
Br(x)

∣∣∣∣f(y)−−
∫
B′

r(x
′)

f(y1, z
′) dz′

∣∣∣∣ dy
satis�es ∫ 1

0

ωf,x′(r)

r
dr < ∞.
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Theorem E. (D.-Choi, 2018) Let q0 > 1. Assume that (u, p) ∈ W 1,q0(B6)
d × Lq0(B6) is a weak

solution of {
Lu+∇p = Dαfα in B6,

div u = g in B6,

where f1 ∈ L∞(B6)
d, fα ∈ Lq0(B6)

d, α ∈ {2, . . . , d}, and g ∈ L∞(B6). Set

Û := A1βDβu+ pe1 − f1.

(a) If Aαβ , fα, and g are of partially Dini mean oscillation with respect to x′ inB4, then we have

(u, p) ∈ W 1,∞(B1)
d × L∞(B1) and

Û ,Dαu ∈ C(B1)
d, α ∈ {2, . . . , d}.

(b) If it holds that [Aαβ ]Cγ0
x′ (B6)

+ [fα]Cγ0
x′ (B6)

+ [g]Cγ0
x′ (B6)

< ∞ for some γ0 ∈ (0, 1), then we have

Û ,Dαu ∈ Cγ0(B1)
d, α ∈ {2, . . . , d}.

A similar result for elliptic systems with Dini mean oscillation coef�cients was obtained by D.-Kim (2016).
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Some remarks:

1. We also proved the corresponding boundary estimate in a half ball.

2. For general C1,Dini domains, we require the DMO condition instead of the partial DMO condition.

3. By using a duality argument, our results also hold when q0 = 1 (in the spirit of Brezis).
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II. A construction of Green matrices for stationary Stokes systems

Stokes systems have two types of Green functions.

One is a pair (G,Π) = (G(x, y),Π(x, y)), we call it the Green function for the �ow velocity, satisfying
LG(·, y) +∇Π(·, y) = δyI in Ω,

divG(·, y) = 0 in Ω,

G(·, y) = 0 on ∂Ω.

Here,G is a d× d matrix-valued function, Π is a d× 1 vector-valued function.

The other one is a pair (G,P) = (G(x, y),P(x, y)), we call it the Green function for the pressure,

satisfying 
LG(·, y) +∇P(·, y) = 0 in Ω \ {y},

div G(·, y) = δy −
1

|Ω|
in Ω,

G(·, y) = 0 on ∂Ω.

Here, G is a d× 1 vector-valued function and P is a real-valued function
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If there exist Green functions for the �ow velocity and pressure, then the pair (u, p) given by

u(y) =

∫
Ω

G(x, y)⊤f(x) dx, p(y) = −
∫
Ω

G(x, y) · f(x) dx

is a weak solution of the problem 
L∗u+∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

where L∗ is the adjoint operator of L.

The Green function for the �ow velocity:

• For the classical Stokes system with the Laplace operator L = ∆: Ladyzhenskaya (1969),

Maz'ya-Plamenevski�� (1983), and D. Mitrea-I. Mitrea (2011).

• Stokes systems with variable coef�cients: Choi-Lee (2017) and Choi-Yang (2017).

There are relatively few results on Green functions for the pressure. For the classical Stokes system, see

Maz'ya-Plamenevski�� (1983) and Maz'ya-Rossmann (2005).
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Existence of the Green function for the pressure

Theorem F. (Choi-D., 2018) Let Ω be a bounded domain in Rd. Suppose that the coef�cients Aαβ of L
are of partially Dini mean oscillation with respect to x′ in Ω Then there exists the Green function (G,P)

for the pressure of L in Ω such that for any y ∈ Ω, G(·, y) is continuous in Ω \ {y} and

(G(·, y),P(·, y)) ∈ W 1,∞
loc (Ω \ {y})d × L∞

loc(Ω \ {y}).

Moreover, for any x, y ∈ Ω with 0 < |x− y| ≤ d∗y/2, we have

|G(x, y)| ≤ C|x− y|1−d

and

ess sup
B|x−y|/4(x)

(
|DG(·, y)|+ |P(·, y)|

)
≤ C|x− y|−d

The same results hold if L is replaced by its adjoint operator L∗
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Global estimates.

Theorem G. (Choi-D., 2018) Let Ω be a bounded domain in Rd having C1,Dini boundary. Suppose that

the coef�cients Aαβ of L are of Dini mean oscillation in Ω. Let (G,P) be the Green function for the

pressure of L constructed in Theorem F. Then for any y ∈ Ω and r > 0, we have

(G(·, y),P(·, y)) ∈ C1(Ω \Br(y))
d × C(Ω \Br(y)),

|G(x, y)| ≤ C|x− y|1−d, |DxG(x, y)|+ |P(x, y)| ≤ C|x− y|−d.

Moreover, if (G∗,P∗) is the Green function for the pressure of L∗, then for any y ∈ Ω, there exists a

measure zero setNy ⊂ Ω containing y such that

P(x, y) = P∗(y, x) for all x ∈ Ω \Ny.

For the proof, we adapted an argument of Grüter-Widman (1982). See also Hofmann-Kim (2007). We use

the L∞-estimates of (Du, p) in Theorem E.
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A remark: Let (G,Π) and (G,P) be the Green functions for the �ow velocity and the pressure of L in Ω,

respectively. We de�ne a (d+ 1)× (d+ 1) matrix-valued function by

G =



G11 G12 . . . G1d −G1

G21 G22 . . . G2d −G2

.

.

.
.
.
.

. . .
.
.
.

.

.

.

Gd1 Gd2 . . . Gdd −Gd

Π1 Π2 . . . Πd P


.

Let (G∗,Π∗) and (G∗,P∗) be the Green functions for the �ow velocity and the pressure of L∗ in Ω,

respectively, and similarly de�neG∗. Then

G(x, y) = G∗(y, x)⊤ for all y ∈ Ω and a.e. x ∈ Ω.
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III. Lp estimate for non-stationary Stokes systems

Known result for the classical non-stationary Stokes system: (Solonnikov (1964), Hu-Li-Wang (2014)) For

p ∈ (1,∞),

∥D2u∥Lp(Q1/2) ≤ N∥f∥Lp(Q1) +N∥u∥Lp(Q1).

Notice that in contrast to the heat equation, we cannot estimate ut by the right-hand side.

Counterexample by Serrin (1962): u = ∇H(x)g(t) and p = −H(x)g′(t), whereH is harmonic.

Then (u, p) satis�es the Stokes system with f = 0. But g ∈ C1 can be arbitrary, so it is impossible to get

∥ut∥Lp(Q1/2) ≤ N∥u∥Lp(Q1).

The corresponding boundary estimate does not hold.
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We are interested in such Lp estimate for Stokes systems with variable coef�cients in divergence form:

ut −Di(aijDju) +∇p = div f, div u = g.

We assume that aij = bij(t, x) + dij(t, x), which satis�es the following boundedness and ellipticity

conditions with ellipticity constant ν ∈ (0, 1):

ν|ξ|2 ≤ aijξiξj , |bij | ≤ ν−1,

bij = bji, dij ∈ L1,loc, dij = −dji, ∀ i, j ∈ {1, 2, . . . , d}.

In particular, aij can be unbounded.

We also consider the corresponding non-divergence form Stokes systems:

ut − aijDiju+∇p = f, div u = g,

where aij = bij is bounded and uniformly elliptic.
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The VMOx (vanishing mean oscillation in x) condition

We impose the following VMOx introduced by Krylov, with constants δ ∈ (0, 1) and α0 ∈ [1,∞) to be

determined later.

Assumption 1 (δ, α0) There existsR0 ∈ (0, 1/4) such that for any (t0, x0) ∈ Q2/3 and r ∈ (0, R0),

−
∫
Qr(t0,x0)

|aij(t, x)− āij(t)|α0 dx dt ≤ δα0 ,

where δ ∈ (0, 1), α0 ∈ [1,∞), and āij(t) is the average of aij(t, ·) inBr(x0).
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Function spaces.

For each s, q ∈ [1,∞) and parabolic cylinderQ = Γ× U ⊂ R× Rd, denote

∥u∥Ls,q(Q) = ∥u∥Ls(Γ;Lq(U)),

W 1,2
s,q (Q) =

{
u : u,Du,D2u ∈ Ls,q(Q), ut ∈ L1(Q)

}
,

and denoteH−1
s,q(Q) the space consisting of all functions u satisfying{

u = divF + h inQ : ∥F∥Ls,q(Q) + ∥h∥Ls,q(Q) < ∞
}
.

Naturally, for any u ∈ H−1
s,q(Q), we de�ne

∥u∥H−1
s,q(Q) = inf

{
∥F∥Ls,q(Q) + ∥h∥Ls,q(Q) |u = divF + h

}
,

and it is easy to see thatH−1
s,q(Q) is a Banach space. Finally, de�ne

H1
s,q(Q) =

{
u : u,Du ∈ Ls,q(Q), ut ∈ H−1

1,1(Q)
}
.
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Main results.

Theorem 1 (D., Phan, 2018) Let s, q ∈ (1,∞), ν ∈ (0, 1), and α0 ∈
( min(s,q)
min(s,q)−1 ,∞

)
. There exists

δ = δ(d, ν, s, q, α0) such that the following statement holds. Under Assumption 1 (δ, α0),

if (u, p) ∈ H1
s,q(Q1)

d × L1(Q1) is a weak solution to the Stokes system inQ1, f ∈ Ls,q(Q1)
d×d,

and g ∈ Ls,q(Q1), it holds that

∥Du∥Ls,q(Q1/2) ≤ N
[
∥f∥Ls,q(Q1) + ∥g∥Ls,q(Q1)

]
+N∥u∥Ls,q(Q1).

Theorem 2 (D., Phan, 2018) Let s, q ∈ (1,∞) and ν ∈ (0, 1). There exists δ = δ(d, ν, s, q) ∈ (0, 1)

such that the following statement holds. Under Assumption 1 (δ, 1), if u ∈ W 1,2
s,q (Q1)

d is a strong

solution to the Stokes system inQ1, f ∈ Ls,q(Q1)
d×d, andDg ∈ Ls,q(Q1)

d, then it follows that

∥D2u∥Ls,q(Q1/2) ≤ N
[
∥f∥Ls,q(Q1) + ∥Dg∥Ls,q(Q1)

]
+N∥u∥Ls,q(Q1).
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Some Remarks.

1. When q = s = 2 and g = 0, we get a Caccioppoli type estimate for Stokes systems.

When aij = δij and f = g = 0, such estimate was proved by B.J. Jin (2013) by using special test

functions.

Note that the corresponding boundary Caccioppoli type estimate does not hold (Chang-Kang, 2018).

2. Our estimates do not contain the pressure term on the right-hand side, in contrast to the previous

results, for instance, by Seregin. Thus our results are new even when the coef�cients are constants.

3. The operators considered are more restrictive than those for the stationary Stokes systems.

The corresponding boundary estimate does not hold.
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Applications to the Navier-Stokes equations.

Consider the Navier-Stokes equations (NSE)

ut −∆u+ (u · ∇)u+∇p = 0, div u = 0.

Let u be a Leray-Hopf weak solution of the NSE inQ1.

For each i, j = 1, 2, . . . , d, let dij be the solution of the equation ∆dij = Djui −Diuj in B1

dij = 0 on ∂B1.

Let [dij ]Bρ(x0)(t) be the average of dij with respect to x onBρ(x0).
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As a corollary of Theorem 1, we obtain the following new ε-regularity criterion for the NSE.

Theorem 3. (D., Phan, 2018) Let α0 ∈ (2(d+ 2)/(d+ 4),∞). There exists ε ∈ (0, 1) suf�ciently

small depending only on the dimension d and α0 such that, if u is a Leray-Hopf weak solution of NSE

inQ1 and

sup
z0∈Q2/3

sup
ρ∈(0,R0)

(
−
∫
Qρ(z0)

|dij(t, x)− [dij ]Bρ(x0)(t)|
α0 dx dt

)1/α0

≤ ε,

for every i, j = 1, 2, . . . , d and for someR0 ∈ (0, 1/2), then u is smooth inQ1/2.

We note that the parameter α0 can be less than 2.

Idea of the proof. We rewrite the NSE into a Stokes system in divergence form with coef�cients that have

singular skew-symmetric part (dij). Then, we iteratively apply Theorem 1 and the Sobolev embedding

theorem to successively improve the regularity of weak solutions.
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Further applications.

Denote Lw
q to be the weak-Ls space, andMq,β to be the Morrey space

∥f∥Mq,β(B1) :=

(
sup

x0∈B1, r>0

r−β

∫
Br(x0)∩B1

|f |q dx

)1/q

.

Corollary (Serrin type criteria). Assume that u is a Leray-Hopf weak solution of NSE inQ1.

(i) Let s, q ∈ (1,∞] be such that 2/s+ d/q = 1. Suppose that u ∈ Ls((−1, 0);Lw
q (B1)) when

s < ∞, or the L∞((−1, 0);Lw
d (B1)) norm of u is suf�ciently small. Then, u is smooth inQ1/2.

(ii) Let s, q ∈ (1,∞] be such that 2/s+ d/q = 1. Suppose that u ∈ Lw
s ((−1, 0);Lw

q (B1)) with a

suf�ciently small norm. Then, u is smooth inQ1/2.

(iii) Let α ∈ [0, 1), β ∈ [0, d), and s, q ∈ (1,∞) be constants satisfying

2α

s
+

β

q
=

2

s
+

d

q
− 1(> 0),

1

s
<

1

2
+

1

d+ 2
, and

1

q
<

1

2
+

1

d+ 2
+

1

d
.

Suppose that u ∈ Ms,α((−1, 0);Mq,β(B1)) with a suf�ciently small norm. Then, u is smooth inQ1/2.
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Some Remarks.

1. When d = 3, Corollary (i) recovers a result by Kozono (1998). When d = 3 and q < ∞, Corollary (ii)

was obtained Kim and Kozono (2004). Our approach only uses linear estimates and is very different from

these in those two papers.

2. We can take q > 1 and s > 10/7 in Corollary (iii) in the case when d = 3.
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An outline of the proof of Theorem 1.

Step 1. We �rst consider Stokes systems with coef�cients that only depends on t: aij = aij(t).

Lemma 1. Let q0 ∈ (1,∞), and (u, p) ∈ H1
q0(Q1)

d × L1(Q1) be a weak solution to the system in

Q1. Then we have

∥D2u∥Lq0
(Q1/2) + ∥Du∥Lq0

(Q1/2) ≤ N(d, ν, q0)∥u− [u]B1
(t)∥Lq0

(Q1),

where [u]B1
(t) is the average of u(t, ·) inB1.

Proof. By a molli�cation in x, we see that ω = ∇× u is a weak solution to the parabolic equation

ωt −Di(aij(t)Djω) = 0 in Q1.

Because (dij(t))n×n is skew-symmetric, ω is indeed a weak solution of

ωt −Di(bij(t)Djω) = 0 in Q1.
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Now we apply the localH1
p estimate for linear parabolic equations to obtain

∥Dω∥Lq0
(Q2/3) ≤ N(d, ν, q0)∥ω∥Lq0

(Q3/4). (1)

Since u is divergence free, we have

∆ui = −Di

d∑
k=1

Dkuk +
d∑

k=1

Dkkui =
∑
k ̸=i

Dk(Dkui −Diuk).

Thus by the localW 1
p estimate for the Laplace operator,

∥Du∥Lq0
(Q1/2) ≤ N∥ω∥Lq0

(Q2/3) +N∥u∥Lq0
(Q2/3).

Similarly,

∥D2u∥Lq0
(Q1/2) ≤ N∥Dω∥Lq0

(Q2/3) +N∥Du∥Lq0
(Q2/3) ≤ N∥Du∥Lq0

(Q3/4)

≤ ε∥D2u∥Lq0 (Q3/4) +Nε−1∥u− [u]B1(t)∥Lq0 (Q3/4)

for any ε ∈ (0, 1), where we used (1) in the 2nd inequality, and multiplicative inequalities in the last

inequality.
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It then follows from a standard iteration argument that

∥D2u∥Lq0 (Q1/2) ≤ N∥u− [u]B1
(t)∥Lq0 (Q1),

from which and multiplicative inequalities we obtain the desired estimate.

Lemma 2. Under the assumptions of Lemma 1, we have

∥ω∥C1/2,1(Q1/2)
≤ N(d, ν, q0)∥ω∥Lq0

(Q1),

where ω = ∇× u.
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Step 2. For the general case, we use a perturbation argument by estimating the mean oscillation of ω:

Let X = Q2R/3 and ω#
dy of ω in X be the dyadic sharp function. Then,

ω#
dy (z0) ≤ N(d, ν, q0)κ

− d+2
q0 M(IQ

3R/4
|f |q0)1/q0(z0) +N(d, q0)κM(IQ

3R/4
|g|q0)1/q0(z0)

+N(d, ν, q0)
(
κ− d+2

q0 δ + κ
)
M(IQ

3R/4
|Du|q1)1/q1(z0) +Nκ−d−2(|ω|)Q3R/4

.

We also apply a local and mixed norm version of the Fefferman-Stein sharp function theorem recently

established by D. and Kim (2015):

Lemma 3. For any s, q ∈ (1,∞), there exists a constantN = N(d, s, q) > 0 such that

∥f∥Ls,q(QR) ≤ N
[ ∥∥∥IQR

f#
dy

∥∥∥
Ls,q(QR)

+R
2
s+

d
q−d−2 ∥f∥L1(QR)

]
.

for anyR > 0 and f ∈ Ls,q(QR).
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Thank you for your attention!
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