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Abstract:

| will report some recent results about both stationary and non-stationary Stokes systems with variable
coefficients. Applications to the Navier-Stokes equations and the construction of Green’s functions will
also be presented.

Based on joint work with Doyoon Kim (Korea University), Jongkeun Choi (Brown University), and
Tuoc Phan (U of Tennessee).



The classical linear Stokes system:
u —Au+Vp=f, divu =g,

where u is a vector-valued function, p is a scalar function, and f is the external force.
Relation to the Navier-Stokes equations.

1. We can view the nonlinear term as external force:
uy — Au~+ Vp = —u-Vu, divu =0.
2. We can also rewrite the equation into the form
Ut — Dz((5m + dZJ)DJU) + Vp — 0, divu = O,
where dij is a skew-symmetric matrix-valued function and satisfies

Adij — Djui — DZ’LLJ



Outline:

. L,, and Dini type estimates for stationary Stokes systems.

ll. A construction of Green matrices for stationary Stokes systems.

lll. L, estimates for non-stationary Stokes systems, with applications.



. L,, and Dini type estimates for the stationary Stokes system.

The classical stationary Stokes system in smooth domains
Au+Vp=f inQ)
divu =g in €2

with the non-homogeneous Dirichlet boundary condition u = ¢ on 0€2 was studied by LadyZenskaya
(1959), Sobolevskil (1960), Cattabriga (1961), Vorovi¢ and Judovi¢ (1961), and Amrouche and Girault
(1991).

Theorem. (Cattabriga, 1961) Let €2 be a bounded C? domain in R3. Then

1Dullzy@) + IPllzg@) < Nlifllw, 1) + Nllgliz, @) + Nlielyi-1/apq)-

The proof is based on the explicit representation of solutions using fundamental solutions.



Amrouche and Girault (1991): bounded C't! domain Q C R, for any d > 2.
Their proof is based on a result by Agmon, Douglis, and Nirenberg (1964) for elliptic systems together

with an interpolation argument.

Galdi, Simader, and Sohr (1994): a bounded Lipschitz domain with a sufficiently small Lipschitz

constant.

Fabes, Kenig, and Verchota (1988): arbitrary Lipschitz domains with the range of ¢ restricted,
by using the layer potential method and Rellich identities.

Subsequent work by Z. Shen, Brown-Shen, M. Mitrea-Taylor, M. Mitrea-Wright, Geng-Kilty.



We are interested in the Stokes system with variable coefficients:

Lu+Vp=f+4+D,fo inQ,
divu =g in €2,

where Q@ C R% and L is a strongly elliptic operator, given by

Lu= D, (A*Dgu), AP =[AP)¢._|
fora, B =1,...,d.

Such type of systems were considered by Giaquinta and Modica (1982) for sufficiently regular.
Motivations:

a. inhomogeneous fluids with density dependent viscosity;

b. equations which describe flows of shear thinning and shear thickening fluids with viscosity depending on

pressure;

c. Navier-Stokes system in general Riemannian manifolds.



Conditions.

The coefficients A*? are bounded and satisfy the strong ellipticity condition, i.e., there exists a constant
6 € (0, 1) such that

d d
AP <7t Y €0 AP >0 el

a,B=1 a=1
foranyé, € R4, a=1,...,d.

A*P are measurable in 1. In particular, they may have jump discontinuities.
Thus, the system can be used to model, for example, the motion of two fluids with interfacial boundaries.

This type of coefficients was first considered by Krylov-Kim (2007) for non-divergence form elliptic

equations with measurable coefficients.



Main results.

Theorem A. (D.-Kim, 2017) Let ¢ € (1, 00), and let {2 be either R or RZ and A*# = A%P ().
It (u,p) € W, (Q)% x Lq(Q) satisfies

(Lu-+Vp=Dyf, inQ
sdivu =g in Q,

\u=0 on O incase 2 = RY,

where fo, g € Ly(£2), then we have that

|DullL,@) + P, < N (allz,@ + I9llL,@) -



We also considered Stokes system in a bounded Lipschitz €2 with a small Lipschitz constant.

In this case, we allow coefficients not only to be measurable locally in one direction (almost perpendicular
to the boundary of the domain), but also to have small mean oscillations in the other directions.

Theorem B. (D.-Kim, 2017) Let ¢ € (1,00), K > 0, and let €2 be bounded (diam €2 < K). Then under
the above assumptions, for (u,p) € W, ()% x Lq(2) satisfying (p)o = 0 and

(£u+Vp:Dafa in €2,
divu =g in €2,
lu=20 on 0f2,

2\

where fo, g € L,(€2), we have that

| Dullz, @) +IPlz,@ < N (lfallz,@ + 19lL,@) -

Moreover, for fo, g € Lq(Q) with (9)q = 0, there exists a unique (u,p) € Wy ()% x Lq(9)
satisfying (p)n = 0 and the system.

Remark: For equations with VMO coefficients, such result was obtained by Choi-Lee (20186).
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|dea of the proof.

1. The proof is based on pointwise sharp and maximal function estimates in the spirit of Krylov (2005).

Such estimates rely on the Cle regularity of solutions to the homogeneous system.

2. Here, the main difficulty is that because the coefficients are measurable in 21, it is impossible to obtain
a Holder estimate of the full gradient Du. To this end, instead of considering Du itself, we estimate

certain linear combinations of Du and p:

D,u and U := Angu + pe;.

3. For this, we apply the Caccioppoli inequality for the stationary Stokes system:

/ |Du|2da:§N(R—r)2/ u|? de,
B, Br

as well as the following key lemma.
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Lemma. Let 0 < r < R, and let ¢ be a constant.

a. If (u,p) € W4 (Br)? x Lo(BR) satisfies the homogeneous system in Br, then D,/p € Lo(B,.)
and

/ |Dx/p\2d:1:§N(R—r)_2/ Dul? dz.
B?“

Br
b. Similar boundary estimate holds.

4. Finally, in order to deal with the system in a Lipschitz domain, we apply a version of the Fefferman-Stein
sharp function theorem for spaces of homogeneous type, which was recently proved in D.-Kim (2015),

and employ a delicate cut-off argument, together with Hardy’s inequality. The solvability follows from the
method of continuity.
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Weighted L,, estimates for stationary Stokes systems.

In a subsequent paper, we considered weighted L,, estimates for stationary Stokes systems in Reifenberg
flat domains.

Muckenhoupt weights: for any ¢ € (1,00), let A, = A,(2) be the set of all nonnegative L1 o
functions w on €2 such that

g—1
wla, == sup <][ w(x) dm) <][ (w(az))_l/(q_l) d:z:) < 0.
£0€2,7>0 \J O, (z0) Q, (20)

Recall that A,, C Ay, for g1 < qo.
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Theorem C. (D.-Kim, 2017) The result of Theorem A holds in the weighted space L, for any w € Aq.

Theorem D. (D.-Kim, 2017) The result of Theorem B holds in the weighted space L, , forany w € A,,
when €2 is a bounded Reifenberg flat domains.

Remark of the proof: Instead of the method of mean oscillation estimates, we applied the level set
argument in the spirit of Caffarelli and Peral, as the method continuity does not work here.

For this, we also derived a reverse Holder’s inequality for stationary Stokes systems:
There exists ¢ > 2 such that
g\ 1/d _g\1/d
q q
(‘Du’ )Br<x0> + (|p| )Br(xo)

1/2

<N <|Da|2)38r($0)

+ N (1p?) 5, +N(|fa|q)g§<xo> + Ugﬁ)gimo)

With Choi, we extended the results to Stokes systems with the conormal boundary condition.
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Dini type estimates.

With better regularity of the coefficients and data, we obtain better regularity of solutions.

A partial Dini condition: We say that f is of partially Dini mean oscillation with respect to x" in By if the

function wy .+ : (0, 1] — [0, 00) defined by

W (1) 1= sup][
x€B4J B, (x)

/1 i <—T) dr < 00.
0

r

f(y) _]{m , [y, 2')d2'| dy

satisfies
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Theorem E. (D.-Choi, 2018) Let gg > 1. Assume that (u, p) € W40 (Bg)4 x L9°(Bg) is a weak
solution of

Lu+Vp=D,f, in Beg,
divu = g in Bg,

where f1 € L>®(Bg)?, fo € LI(Bg)? o € {2,...,d},and g € L*°(Bg). Set

U= AlﬂDﬁu—l—pel — fi.

(a) If AP, fo, and g are of partially Dini mean oscillation with respect to 2’ in By, then we have
(u,p) € WH°(B;)?% x L>(B;) and

U,Dyuc C(B)? aec{2,...,d.
(b) If it holds that [AOCB]CWE)(B6) + [falco () + 9]0 (54) < 00 for some o € (0, 1), then we have
U,Douec C* (B¢, aec{2,....d}

A similar result for elliptic systems with Dini mean oscillation coefficients was obtained by D.-Kim (2016).
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Some remarks:
1. We also proved the corresponding boundary estimate in a half ball.
2. For general C':P™ domains, we require the DMO condition instead of the partial DMO condition.

3. By using a duality argument, our results also hold when gg = 1 (in the spirit of Brezis).
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ll. A construction of Green matrices for stationary Stokes systems

Stokes systems have two types of Green functions.

One is a pair (G, I1) = (G(x,y),(x,y)), we call it the Green function for the flow velocity, satisfying
( LG(-,y) + VII(-,y) = 6,I in Q,

4 divG(-,y) =0 in Q,

G(-,y) =0 on 0.

\

Here, G is a d X d matrix-valued function, Il is a d X 1 vector-valued function.

The other one is a pair (G, P) = (G(x,y), P(x,y)), we call it the Green function for the pressure,

satisfying

(LG(-y) +VP(,y) =0 in Q\ {y},

: 1
divg(-,y) = 6y — @

G(-,y) =0 on 09.

in ),

_/\

\

Here, G is a d X 1 vector-valued function and P is a real-valued function

18



If there exist Green functions for the flow velocity and pressure, then the pair (u, p) given by

uty) = [ Glen) 1@ dz, p0) =~ [ G)- fla)do
is a weak solution of the problem
(L*u+Vp=f inQ,
4 divu =0 in €,
u=0 on 0f,

where L* is the adjoint operator of L.

The Green function for the flow velocity:

e For the classical Stokes system with the Laplace operator £ = /A: Ladyzhenskaya (1969),
Maz'ya-Plamenevskii (1983), and D. Mitrea-I. Mitrea (2011).

e Stokes systems with variable coefficients: Choi-Lee (2017) and Choi-Yang (2017).

There are relatively few results on Green functions for the pressure. For the classical Stokes system, see
Maz'ya-Plamenevskii (1983) and Maz'ya-Rossmann (2005).
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Existence of the Green function for the pressure

Theorem F. (Choi-D., 2018) Let €2 be a bounded domain in R%. Suppose that the coefficients A%” of L
are of partially Dini mean oscillation with respect to =’ in {2 Then there exists the Green function (G, P)
for the pressure of L in {2 such that for any y € €2, G(-, y) is continuous in 2 \ {y} and

(g(ay)ap(vy» = Wli;coo(Q \ {y})d x L%JC(Q \ {y})
Moreover, for any ,y € Qwith 0 < |z — y| < d7 /2, we have
G(z,y)] < Clo —y"*

and

oS (IDG (- y)| + [P, )|) < Clz —y| ™
|z —y|/4\L

The same results hold if L is replaced by its adjoint operator L*
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Global estimates.

Theorem G. (Choi-D., 2018) Let 2 be a bounded domain in R? having C'»P™ poundary. Suppose that
the coefficients A%” of L are of Dini mean oscillation in €. Let (G, P) be the Green function for the

pressure of L constructed in Theorem F. Then for any y € {2 and r > 0, we have
(g(7 y)? P(v y)) S Cl(Q \ Br(y))d X C(Q \ Br(y))a

G(z,y)| < Clz —y|*™?, |D.G(z,y)| + |P(z,y)| < Clz —y| =%

Moreover, if (G*,P*) is the Green function for the pressure of L*, then for any y € 2, there exists a

measure zero set [V, C () containing y such that

P(x,y) =P (y,x) foral z € Q\ N,.

For the proof, we adapted an argument of Griter-Widman (1982). See also Hofmann-Kim (2007). We use
the L°°-estimates of (Du, p) in Theorem E.
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A remark: Let (G, 1I) and (G, P) be the Green functions for the flow velocity and the pressure of L in 2,
respectively. We define a (d + 1) x (d + 1) matrix-valued function by

(G” G112 Gld _g!

G21 G22 G2d _g2
G =

Gdl Gd2 N Gdd _gd

\Hl m ... ¢ P )

Let (G*,I1*) and (G*, P*) be the Green functions for the flow velocity and the pressure of L* in €2,
respectively, and similarly define G*. Then

G(z,y) = G*(y,z)' forall y € Q andae. z € .
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lll. L, estimate for non-stationary Stokes systems

Known result for the classical non-stationary Stokes system: (Solonnikov (1964), Hu-Li-Wang (2014)) For
p € (1,00),
ID%ullL, @ ,2) < NIz, @u) + Nllullz, @)

Notice that in contrast to the heat equation, we cannot estimate u+ by the right-hand side.

Counterexample by Serrin (1962): u = VH (x)g(t) and p = —H (x)g’(t), where H is harmonic.
Then (u,p) satisfies the Stokes system with f = 0. But g € C'! can be arbitrary, so it is impossible to get

The corresponding boundary estimate does not hold.
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We are interested in such L, estimate for Stokes systems with variable coefficients in divergence form:
ur — Di(a;;Dju) + Vp=div f, divu=g.

We assume that a;; = b;;(t, x) + d;;(t, x), which satisfies the following boundedness and ellipticity
conditions with ellipticity constant v € (0, 1):

v|E]? < aij&gl, byl < v,
bij = bji; Clij < Ll,loca dij = _djia Vi,j5 € {1,2, .. ,d}
In particular, a;; can be unbounded.

We also consider the corresponding non-divergence form Stokes systems:
Ut — aijDiju + Vp = f, divu = g,

where a;; = b;; is bounded and uniformly elliptic.
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The VMO,. (vanishing mean oscillation in ) condition

We impose the following VMO, introduced by Krylov, with constants § € (0, 1) and o € [1, 0) to be
determined later.

Assumption 1 (J, cg) There exists Ry € (0,1/4) such that for any (to, o) € Q2/3 andr € (0, Ro),

][ |ai;(t, x) — a;;(t)|*° dx dt <6,
Qr(to,xo)

where 6 € (0,1), ap € [1,00), and a;;(t) is the average of a;;(t, -) in By (o).
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Function spaces.

For each s, ¢ € [1, 00) and parabolic cylinder Q = I' x U C R x R?, denote

lullp, @) = lulle, L,y

Wsl,@qz(@) = {u . w, Du, D?u € L ,(Q), us € Ll(Q)} :

and denote H;é (@) the space consisting of all functions w satisfying

{u=divF+hinQ: |F|L, @ + L, @ < oo}
Naturally, for any v € H_ | (Q), we define
lullgs2 gy = nf {IFlL. @ + I1hllz. y@) | u=divEF +h},

and it is easy to see that H;é(@) is a Banach space. Finally, define

”H;q(Q) = {u: u,Du € Ls 4(Q),u € Hf%(@)} .
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Main results.

min(s,q)

Theorem 1 (D., Phan, 2018) Let s,q € (1,00),v € (0,1),and ag € (min(s,q)—l’
0 = d(d, v, s, q, ap) such that the following statement holds. Under Assumption 1 (9, o),

if (u,p) € Hijq(Ql)d x L1(Q1) is a weak solution to the Stokes system in Q1, f € L (Q1)%*?,
and g € Ls 4(Q1), it holds that

oo). There exists

| Dl

LS,q(Q1>i| + NHU" Ls,q(Ql)'

LS,Q(Q1/2> S N|:Hf| Ls,q(Ql) + Hg‘

Theorem 2 (D., Phan, 2018) Let s,q € (1,00) and v € (0, 1). There exists § = §(d, v, s,q) € (0,1)
such that the following statement holds. Under Assumption 1 (6, 1), if u € W12(Q1)% is a strong
solution to the Stokes system in Q1, f € Ly 4(Q1)%*%, and Dg € L ,(Q1)%, then it follows that

| D*ul

Le(@n | + Nlul

Lea(@1)2) < N{IIfllz. o) + 1Dg] Leg(Q1)-
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Some Remarks.

1. When g = s = 2 and g = 0, we get a Caccioppoli type estimate for Stokes systems.

When a;; = 57;]- and f = g = 0, such estimate was proved by B.J. Jin (2013) by using special test
functions.

Note that the corresponding boundary Caccioppoli type estimate does not hold (Chang-Kang, 2018).

2. Our estimates do not contain the pressure term on the right-hand side, in contrast to the previous
results, for instance, by Seregin. Thus our results are new even when the coefficients are constants.

3. The operators considered are more restrictive than those for the stationary Stokes systems.

The corresponding boundary estimate does not hold.
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Applications to the Navier-Stokes equations.

Consider the Navier-Stokes equations (NSE)
ur —Au+ (u-V)u+Vp =0, dive=0.

Let u be a Leray-Hopf weak solution of the NSE in ().

Foreachi,j = 1,2,...,d, let d;; be the solution of the equation
Adij — Djuz- — Di’LLj in Bl
dij — 0 on 631

Let [di;] B, (x0) (t) be the average of d;; with respect to z on B, (o).
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As a corollary of Theorem 1, we obtain the following new e-regularity criterion for the NSE.

Theorem 3. (D., Phan, 2018) Let g € (2(d + 2)/(d + 4), 00). There exists € € (0, 1) sufficiently
small depending only on the dimension d and ay such that, if u is a Leray-Hopf weak solution of NSE
in ()1 and

1/0&0
sup  sup ][ |dij(t, ) — [dij| B, (20) (1) |7 da di <e,
20€Q2/3 p€(0,Ro) \JQ,(20)

foreveryi,j = 1,2,...,dand for some Ry € (0,1/2), then u is smooth in ()1 /2.
We note that the parameter oy can be less than 2.

Idea of the proof. We rewrite the NSE into a Stokes system in divergence form with coefficients that have
singular skew-symmetric part (dij). Then, we iteratively apply Theorem 1 and the Sobolev embedding
theorem to successively improve the regularity of weak solutions.
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Further applications.

Denote L’ to be the weak-L s space, and M, g to be the Morrey space

1/q
1 £, 4 (B1) 1—( sup 7“_5/ |f|qu> .
ro€B1, >0 By (x0)NB1

Corollary (Serrin type criteria). Assume that u is a Leray-Hopf weak solution of NSE in ().

(i) Let s, q € (1,00] be suchthat 2/s + d/q = 1. Suppose that u € Ls((—1,0); Lg (B1)) when
s < 00, orthe Lo ((—1,0); LY (B1)) norm of w is sufficiently small. Then, u is smooth in (1 /2.

(ii) Let 5, q € (1, 00] be such that 2/s + d/q = 1. Suppose that u € L' ((—1,0); Ly (B1)) with a
sufficiently small norm. Then, u is smooth in Q1 /2.

(i) Let v € [0,1), B € [0,d), and s,q € (1,00) be constants satisfying

20z+ﬁ 2_|_d 1(> 0) 1<1+ 1 g 1<1_|_ 1 —I—l
— 4+ —=—-4+ - — , — <-4+ ——, and - < -4+ —— 4 —.
S qg s q s 2 d+2 qg 2 d+2 d

Suppose that u € M o ((—1,0); My, g(B1)) with a sufficiently small norm. Then, u is smooth in Q1 /5.
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Some Remarks.

1. When d = 3, Corollary (i) recovers a result by Kozono (1998). When d = 3 and ¢ < oo, Corollary (ii)
was obtained Kim and Kozono (2004). Our approach only uses linear estimates and is very different from
these in those two papers.

2. We can take ¢ > 1 and s > 10/7 in Corollary (iii) in the case when d = 3.
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An outline of the proof of Theorem 1.
Step 1. We first consider Stokes systems with coefficients that only depends on t: a;; = a;;(1).

Lemma 1. Let go € (1,00), and (u, p) € H (Q1)? x L1(Q1) be a weak solution to the system in
(1. Then we have

||D2uHLqO (Q1/2) —+ HDuHLqO(Ql/Q) S N(d, v, QO)HU o [U]Bl (t)Hqu(Q1)7
where [u] g, (t) is the average of u(t, -) in Bj.

Proof. By a mollification in , we see that w = V X u is a weak solution to the parabolic equation
Wt — Di(CLij (t)DJCU) =0 in Ql.
Because (d;; (t))nxn is sSkew-symmetric, w is indeed a weak solution of

Wt — Dz(bw(t)Djw) =0 in Ql.
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Now we apply the local 7—[113 estimate for linear parabolic equations to obtain

1Dwl| L, (Qsys) < N(d,v,q0)lwll Ly, (Qs)0)-
Since u is divergence free, we have
d d
Au; = —D; Z Dyug + Z Dypu; = Z Dy (Dyu; — Diyug).
k=1 k=1 ki
Thus by the local I/Vp1 estimate for the Laplace operator,
1Dul| L, (Q1)2) < NIWlLyy(@sys) + NlUllLyy (@9

Similarly,

HDQUHL%(QW) < N||Dwl 1, (@s/5) T NlIDullL, (@s/5) < NIIDullL, (@s/4)

< el D%ullz, (@50 + Ne ™ lu— [u]p, ()L, (@)

forany € € ((), 1), where we used (1) in the 2nd inequality, and multiplicative inequalities in the last

inequality.
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It then follows from a standard iteration argument that

ID*ull L, (@1)0) < Nllu = [u]B, (D)2, 1)
from which and multiplicative inequalities we obtain the desired estimate.

Lemma 2. Under the assumptions of Lemma 1, we have

HWH01/2,1(Q1/Q) < N(d,v, QO)HWHLQO(Ql)a

where w = V X wu.
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Step 2. For the general case, we use a perturbation argument by estimating the mean oscillation of w:
Let X = (Q2r/3 and wjf of w in X" be the dyadic sharp function. Then,

#

_dt2
Way (ZO) < N(dv v, QO)/f 10 M(IQ |f|q0)1/q0 (ZO) + N(dv qO)“M(IQ

3R/4 3R/4

9]%) /% (2)
d+2

+ N(dovao) (x5 0+ ) M, ,, [Dul™)!/% (20) + Nk~ (g

3R/4"

We also apply a local and mixed norm version of the Fefferman-Stein sharp function theorem recently
established by D. and Kim (2015):

Lemma 3. Forany s,q € (1, 00), there exists a constant N = N(d, s, q) > 0 such that

1. e < V| |Tanfd

forany R > 0and f € Ls ((QR).

2, d
+RE+E_d_2 i|
Lo (On) 112 on)
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Thank you for your attention!
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