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| Control and Stochastic PDEs.
[l Scaling Arguments.
[l Subsumption and Saturation.
VI Applications.
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Part I:
Control and Stochastic PDEs.



Degenerate Stochastic PDEs

d
du+ (Lu+ N(u))dt => " oxdW*,  u(0) =up € H (1)
k=1

@ L linear, unbounded. N multi-linear.
@ dWk i.i.d. gaussian white noise. o € H. d << oo (‘degenerate noise’).

Basic Questions
(i) Robust observability of statistics (Unique ergodcity of invariant measures).
(i) Realizable outcomes (Support Properties).

Model equations: Navier-Stokes, Boussinesq, Korteweg-de Vries (KdV).

Physical motivations: Stochastic forcing in (1) models large scale stirring
driving turbulent flow.
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The Low Mode Control Problem

d
% + Lu+ N(u) = ;ak(t)ok u0)=uoeH (2)

@ L linear, unbounded. N multi-linear. ox € H. d << .
@ a(t) = (aq(t),...,aq(t)) actuators (replace white noise).

Goal: Characterize the accessibility sets
A(ug, T) := {u(T, up, @) : a piecewise continuous}. (3)J

@ A(up, T) has basic implication for the SPDE associated to (2).
@ Interactions between forcing and non-linearity N.
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The Markovian Framework

d
du+ F(u)dt = cdW =) " oxdW*, 1(0) = up € H. (4)

k=1

Markov transition functions: P:(ug, A) = P(u(t, up) € A), up € H, A € B(H)
Pro(uo) = [ o{u)Pi(to.du) = Bo(u(t.tn)); (61 H =)
wPi(A) = / Pi(u, A)du(u); (u probability measure on H),
H

evolving observables and probability laws.

w € Pr(H) is an Invariant Measure (IM) if
uPy=p forall t > 0. J
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Unique Ergodicity

du+ F(u)dt =ocdW, u(0)=up <€ H, Piug,A)=P(u(t,uy) € A)
Pib(to) = ES(u(t, ), uPy(A) == /H P(u(t, Up) € A)dp(Uo).

Existence/Uniqueness/Attractivity of Invariant Measures (IM)

(i) Smoothing properties of P;: (Hypo)ellipticity of the Kolmogorov
Equation? Recall that V(t, u) := Pip(u) solves

oV = %ﬁ’[(aa*)Dz V] — (F(u),DV), V(0) = ¢.

(i) Irreducibility: Common states v* can be reached by the dynamics

inf  Py(u,B(e,v*)) >0 forall M >0,ec>0.
ueB(M,v+)

(iii) Lyupunov Structure: Thereisa £ : H — Rt w/ £(u) — oo as U — oo S.t.
P <f(t)e+ C with f(f) »0ast— oo.

@ (i), (ii) are reducible geometric to control problems.

@ References: Doeblin (30’s), Doob-Khasminskii (40, 60’s), Harris (50’s),
Hairer-Mattingly (00’s).
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Support of a Borel measure
Given p € Pr(H), supp(u) = {u € H: u(B(u,¢)) > 0, for every e > 0}. J

du+ F(u)dt =ocdW, u(0)=ugc H, Piup,A)=P(u(t,up) e A (5

— + F(vV)=a-o, V(T,uo,a):u(T,uo,/a).
at 0

Theorem: Controllability = Support (Stroock-Varadhan)

(i) supp(Pr(uo,-)) = A(uo, T) := {v(T, up, @) : @ piecewise continuous}.

(i) Suppose A(ug, T) = H then supp(u) = H for every IM of (5).
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Support of a Borel measure
Given p € Pr(H), supp(u) = {u € H: u(B(u,¢)) > 0, for every e > 0}. J

du+ F(u)dt =ocdW, u(0)=ugc H, Piup,A)=P(u(t,up) e A (5
dv

E—&-F(V):a-tf, V(T7u07a):u(T7u07/-a)'

0
Theorem: Controllability = Support (Stroock-Varadhan)

(i) supp(Pr(uo,-)) = A(uo, T) := {v(T, up, @) : @ piecewise continuous}.

(i) Suppose A(ug, T) = H then supp(u) = H for every IM of (5).
Proof (additive noise = W — u(T, ug, W) continuous.).

< FixveAug, T),e>0.

Find V= [;ads&d > 0...

P( sup |V(t)— W(t) <d)>0
te[0,T]

= Fix v € supp(Pr(uo,-)),

e > 0. Find W(w) s.t. .

|u(T,up, W(w)) —v| <e/2...
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Overview and Previous Work

Geometric Control in Infinite Dimensions
Scaling: Short powerful burst controls yield dynamics following rays.

Saturation: Accounting framework which sidesteps multiple time scales and
other nightmares.

Algebraic Conditions: Hormander type algebraic conditions.

Applications: Ergodicity and support properties for degenerate stochastic
KdV & Boussinesq, Prevention of blowup for 3D Euler.

Previous Work
@ Jurdevic-Kupka— Geometric control in finite dimensions.
@ Agrachev-Sarychev’s Approach. See also Shirikyan, Nersisyan, Nersesyan.

@ Bracket Analysis: E-Mattingly, Mattingly-Hairer, Romito,
GH-Foldes-Richards-Thomann.

@ Non-degenerate noise: DaPrato-Zabczyk, Flandoli-Maslowski.
@ oo-Dim Malliavin Calculus: Hairer-Mattingly, Mattingly-Pardoux.

| A
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Part Il:

Scaling Arguments



Directly Controlled Modes, Ray Semigroups

%qu Lu+ N(u) = h,u(0) = ug defining ®Muy := w(t, uo, h)

d .
s v(0) = vo defining pfuo := v(t, o, g)

Scaling to a Ray: Introduce a parameter A >> 0

vi(t) = d)f/”AUO forhe H,

solves

d 1
VAT (LV/\ + N(vy)) = h, viA(0) = uo

Subject to suitable estlmates we expect
I|m ||¢t/,\u0 pruoll =0
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The ‘Nonlinear-Twist’

gtu + Lu + N(u) = h, u(0) = up defining ®ug = u(t, ug, h)
gtv =g,v(0) = vy defining pfuo := v(t, o, g)

Accentuating ‘Resonant’ Terms in N:

—Am Am
wi(t) = py/) gq)(tJ/,\mP1/,€u0

which solves

d 1
ZWa+ 1 (LW + 7g) + N(Wx + ) = 0, Wx(0) = o

Recalling that N is m-multi-linear N(A\g) = \"N(g) we expect

: “Mga0 Ng N(9) 11 —
)\I|_>moo ||p1/>\ q)t/AmpU)\uO —pp Ul =0
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The ‘Nonlinear Twist’

%, (ug + Ah) =~ up + \h + tN(h)

\m

Xhug = up + \h

1
X

Up
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The Goal: In Pictures.

%u+ Lu+ N(u) = h, oMy = u(t, uo, h).

Hd)f’ o OROM Uy — VH <e

hie 7o :={a-0:aecR%

T=t+b+t+---+1

Uo

®pfuo ~ uo +th when >0

NP0 oMy~ ug + tN(h)  when > A > 0
bV bV

a1
xm
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By = span{m,...,ad}, Bn = span{Bn_1 U{N(h): he Bn_1}}, B = %

n>0

We might expect

Up+ Boo € A(Ug, T) = {nf=1¢;jf“’uo coy R+ -+t =T}

Complications

@ Multi-scale nightmare: (u, \) for By becomes (pu1,. . ., pxny, A) for By.

@ Arguments for relaxed time. Small time to fixed time T > 0?

@ What’s in B,?

@ We need to be able to flow forwards & backwards along N(h) for h € B,,.
@ Rigorous bounds to justify approximations.
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Part IlI:

Subsumption, Saturation.



Saturation Formalism

Let S be the continuous (local) semi-groups on a phase space H. 7,G C S.

Definition: Accessible Sets, The Saturate

Ar(u,<T)= [J {op--dju:d/ e F,> =t} (Accessible Sets)

t€(0,T] i
Subsumption: G < F if Ag(u, < T) C Ar(u,< T),forallue H, T > 0.
Equivelence: G ~ F ifG Fand F x G

Saturate: Sat(F) := Ug< 9
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Saturation Formalism

Let S be the continuous (local) semi-groups on a phase space H. 7,G C S.

Definition: Accessible Sets, The Saturate

Ar(u,<T)= [J {op--dju:d/ e F,> =t} (Accessible Sets)

t€(0,T] J
Subsumption: G < F if Ag(u, < T) C Ar(u,<T),forallue H, T > 0.
Equivelence: G ~ F ifG Fand F x G

Saturate: Sat(F) := Ug< 9

The Saturation Theorem (Sidesteps the Multi-scale Nightmare!)
() G F < Forveg,e,T>0,uye chereexists¢fe]-‘,t,->0,s.t.

[Wup —&"---d'ugl| <6, H+---+t,<T.

(i) F ~ Sat(F)
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Relaxed Accessibility to Exact Time

Ar(u,<T)= |J Ar(ut)y= |J {of - olu:d e F > =t}
te(0,T] te(0,T] j

Scaling arguments only identify u € Az (u, < T).

Conversion Lemma (u € Ax(u,< T)=""u € Ax(u,T))
Let F be a collection of continuous semigroups and O C H, open. Then

OCA(u,<T) = OCAu,T)

If ASat(r)("’ < T)=H then F is approximately controllable (Ag(u, T)=H).
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The ‘Pin-Ball’ Argument

@ Fixue O, T>0,¢e>0.
@ Pick any ¥* € F and then
¢ > 0 such that

= inf d(yiv
7 Veg(]v,e’){ (¢S v V) > 6}
s>0

is strictly positive.
@ Findp < T and
o0 =00 0" c F
such that d(®%u, v) < €.
@ Pick nsuch that
To+no <T< 7+ (I’H—1)0’.
e Inductively, let pj <T="otne
rk=rkt...rkme
s.t.
d(rk ¢rvi_q,v) < €.
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More Refined Controls.

Exact Control on Finite Dimensional Projections 77

H
Foru,v € H, T,e > 0 does there exist o T
o' ..., " € F such that
o0 v <« N2

and
m(- ®"u) = n(v)? e

M)
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Uniform Saturation

S = {®:[0,00) x H x Z — H|® continuous, dJu = u, 7, u = d7ddu}

Definitions: &,§ C &

(Subsumption) & <, §, if VW € &, compact K; C H, K, C P(V), ¢, T > 0, there
exist®',...,®" € F, ty,...,t, > 0, continuous f; : K, — P(®) s.t.

n
sup Hd>’t;f"(p)u—\li’%u <e Y LT (6)

ueK,pekp Il ;4
(Saturation) Saty(§) = Ug<,» ®

@ As above Sat,(F) ~u §.
@ To obtain (6) we need estimates like
2 2
lim sup [|[® up — plugl| =0 lim sup |[p; )\ 909,02 Jug — pN@ug|| = 0
Jim_ sup (3o — pfuoll =0 fim_ sup (15395 e Suto — o1 o]
upek upek

@ Morally speaking Sat,(§) = H yields results for exact control on finite
dimensional projections with Brouwer fixed point arguments.
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Positivity of the Density on Finite-Dim Projections

Let Q = Co((—o0,0); R?) and @ : [0,00) x H x Q — H be a (continuous,
markov) cocycle:

¢[+S(u, V) = ¢t(¢s(ua V)7 esv), (bo(ua V) =u (7)
where 6;V(t) := V(t+ s) — V(s). The associated Malliavin Matrix is given as

Mi(u, V) := Dy¢i(u, V)(Dyoi(u, V))* (8)

Theorem (GH-Herzog-Mattingly ’17, Mattingly-Pardoux '06)

Let 7 : H— R™ be a projection and assume

(i) Forallu,v € H,t> 0, there exists V € Q s.t. n(v) = n(¢:(u, V)).

(i) Fort >0, P((My(u, W)¢, &) forall ¢ € H\ {0}) = 1

Then = (¢:(u, W)) is continuously distributed on R™ w/ an a.e. positive density.)
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Remarks on the Malliavin Matrix

Given a cocycle ¢:(ug, W) we defined M;(u, W) :=Dy¢:(u, W)(Dwo:(u, W))*.

Full Rank Tangent Spaces

@ Exact controllability on =(H) = for every x € R™ there exists Vy € Q such
that x = (¢ (U, Vx)).
@ For any Cameron-Martin perturbation H
m(¢t(U, Vx + eH)) = x + em(Dwor(u, Vx)H)
@ Invertibility of #M;(u, Vi) implies tangent space around x is of full rank.
(Take He = (Dwor(u, Vi) m(mMy(t, Vi)m)~1¢ for € € R™.)
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Part IV:

Applications.



Damped and Stochastically Forced KdV

au + (Uxxx + YU + %(uz)x)dt: f+ ) okdW* (9)
kez
Theorem (GH-Martinez-Richards '18)

() For any invariant measures p of (9)
/||u||f,mu(du) <o foralm>0,R>1, up(C>®)=1 (10)

(i) Suppose ok(x) = sin(kx), k > 0, ox(x) = cos(kx), k < 0, then there is an
Ns.t. if Z D [-N,...,N] has a unique invariant measure p.
(iii) If {—1,1} C Z (9) is approximately controllable in H™ for m > 2.
(Conjectured: Unique Ergodcity in the ‘Hypo-elliptic Case’, (iii)).

@ Invariants at all orders (complete integrability) for the free equation
(Miura-Gardner-Kruskal, Lax, Zakharov-Faddeev).

@ Finite dimensional attractors for the deterministic-damped driven system
(Ghidaglia, Goubet, Debussche-Odasso, Jolly-Sadigov-Titi).

Nontrivial task find functionals to exploit these structures for sKdV.
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Braketology for Even Degree Nonlinearities

Bidirectionality?

Recall that p, /’\; O‘gcb?/ Ampg\;ig up ~ p;"mN(g) Uy but we need obtain
pN@ ¢ Sat(Fp), v € R to iterate!

KdV-Burgers N(u, v) := 0x(uv), ok(x) = sin(kx), 5x = cos(kx)

N(aoy + Boe) = —0Pkdak — af (K + O)Fkse + (K — 0)Fk—s) + B2l52
N(aoy + B6¢) = —0Pkdak + af (K + O)okre — (K — O)ok—s) + Bl52

N(abk + B6¢) = oPkGok + af (K + 0)Fkre — (K — £)k—g) + B2U5 2.
Even Modes

N(aak + a&k) = :|:2042k0'2k, N(aak) = —20425'2;(, N(ﬁ&k) = 2,825'2k. (1 1)
Odd Modes

N(a02m+2 + B854 ) = —a2(2m+2)54m+4+a6((2m+3)02m+3 = (2m+1 )0'2m+1 )+B25’
N(aoamia+B0o1) =—02(2M+2)54mps—B((2M+3)52msa+(2M+1)52my1 )+ 525

o

o
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The Boussinesq Equation with degenerate forcing

du+ (u-vVu+Vr —vAu)dt = ghdt, V- -u=0,
df + (u- Vo — kAG)dt = hdt + godW.

Theorem (Féldes-GH-Richards-Thomann '13, GH-Herzog-Mattingly ’17)

Suppose that
oodW = cos(k - X)dW" + sin(k - x)dW? + cos(k - x)dW? + sin(k - x)dW?*,
for some k. k € Z2 withk - k- # 0. Then
(i) There is a unique invariant measure i on H = (L2(T?))2. p is
geometrically ergodic and for any regular observable ¢, Uy € H

4
lT/o o(U(t, Up)) —

(i) The IM p has full support:
w(B(Up,€)) >0 forevery Uy € H,e > 0.
Moreover, for any finite dimensional projection Tl : H — RN
NU(t, Up) is continuously distributed with support RN,

ey o(U)du(U)  almost surely.
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The Lie Bracket Structure

dw + (U Vw — 1 Aw)dt = agdsfdt, u=Kxw

do+ (u-V0— 1200 — h)dt =cpdW = > apdW"’.
k=1,2,/=0,1

o9(x) := (0,cos(k - x))", ol(x):=(0,sin(k - x))"
)

;
U(x) := (cos(k - x),0)",  ¥}(x) := (sin(k - x),0)" .
m+m+1
/ik
A
b zou).ap)
[-FU)] ) J
o — Y(U) —— Z"(V)
L) [m "), v (U)]
y :
U+ dmia (V) ¥

Uil "+ Jkomem (U)

Nathan Glatt-Holtz (Tulane University) Geometric Control in co-Dim. August 20, 2018



Low Mode Control Prevents Blow up for 3D Euler

ou+u-vu+Vr =g+ Z axm(t)ek.rm
ke Z,1,me0,1

ex/.m(x) = 2aRe(i"e **) al . k=a} -k=aj - al
H=C>® duv)=> 1A[u-v|yn
m>0
Theorem (GH-Herzog-Mattingly ’17)
Suppose that {(1,0,0),(0,1,0),(0,0,1)} C Z. Then

@ (12) is approximately controllable on H and exactly controllable on finite
dimensional projections.

@ In particular 3 a smooth « : [0, 00) — RY s.t. u(-, Ug, ) exists globally.

Commentary:
@ No ‘energy budget’ imposed for this result.
@ ‘Braketology’ due to Romito.

@ Previous similar no-blowup results: Shirikyan, Nersisyan using the
Agrachev-Sarychev approach.
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@ Statistical properties of stochastic evolution equations lead to geometric
control problems of independent interest.

@ We developed a scaling and saturation framework which provides a
powerful, flexible framework to tackle ‘low mode’ control problems.
@ Each model still requires a separate analysis:

Algebraic: Interactions between stochastic and nonlinear terms. Hormander
type conditions.
Analytic: Rigorous PDE type estimates.
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