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SQG in R? (or T?)

Nonlinear, nonlocal, scalar
00 +u-Vo=0
6(x, t) is a real valued function of x ¢ R and t € R
u= R
R is a vector of Riesz transforms

Xi—Yi
re [X —y[3

Rif(x) = 0i(—A) "2 f(x) = cPV f(y) dy

R+ = (—Ro, Ry)

The velocity u is divergence-free.
Held, Pierrhumbert, Garner, Swanson '95: SQG is an equation for
frontogenesis in meteorology

» model for rapidly rotating, stratified fluids
» 0 temperature (or surface buoyancy) in a 2D layer



Analogies with the 3D incompressible Euler equations

» Conservation of kinetic energy, ||u||;=.
» The integral curves of V- are carried by the flow.

» V-0 is like 3D vorticity w, Constantin—Majda—Tabak ('94): it
satisfies the stretching equation

(0 + u-V)(VE0) = (Vu)(V4E), u=Vi(—A) 20

3D Euler: (r+u-V)w=(VU)w, u=V-A)"w
» The Beal-Kato-Majda theorem holds: a smooth solution blows up
attime t = T if and only if fOT [[VEO(-, 1) o dt = 0.

» If the direction of level lines is locally nice, geometric depletion of
nonlinearity.
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Analogies with the 3D incompressible Euler equations

» Conservation of kinetic energy, ||u||;=.
» The integral curves of V- are carried by the flow.

» V-0 is like 3D vorticity w, Constantin—Majda—Tabak ('94): it
satisfies the stretching equation

(0 + u-V)(VE0) = (Vu)(V4E), u=Vi(—A) 20

3D Euler: (r+u-V)w=(VU)w, u=V-A)"w
» The Beal-Kato-Majda theorem holds: a smooth solution blows up
attime t = T if and only if fOT [[VEO(-, 1) o dt = 0.

» If the direction of level lines is locally nice, geometric depletion of
nonlinearity.

Difference to 3D Euler: The 2D SQG has weak continuity of the
nonlinearity in L? due to a commutator structure. Resnick ('95)

Major open problem: global existence of smooth solutions vs blow up.



Dissipative SQG in R?

00 +u-VO+NMN0=0
u=vVEtATle, A= (—A)2

The fractional Laplacian has an explicit kernel in R?,

ASf(x) = cPV/ 109 =10) 4

Rz |X — y[?*s

for0 < s < 2.



Dissipative SQG in R?

00 +u-VO+NMN0=0
u=vVEtATle, A= (—A)2
The fractional Laplacian has an explicit kernel in R?,
C X)) — )
Nf(x) = cPV / ——=2
) R |X — y[2Fs
for0 <s<2.
Scaling invariance: 6x(x, t) = A~ '6(\x, ASt)
» s> 1, subcritical SQG: global smooth solutions. Resnick '95,
Constantin, Wu ’99
» s =1, critical SQG: global smooth solutions.

» Small data in L*°: Cordoba—Constantin—-Wu '01

» Large data: Caffarelli-Vasseur 07, Kiselev—Nazarov—Volberg '07,
Kiselev—Nazarov ’09, Constantin—Vicol '12,
Constantin—Tarfulea—Vicol '15

» s < 1, supercritical SQG: The problem of global existence of
smooth solutions is open.



Global regularity ideas in the whole space
» The stretching equation

(O +u-V+N) V0 = (Vu)V+e.

» Take the scalar product with V-6
1
5(8r+u'V+/\)q2+D(q) =Q
for g2 = |V+6)?, with
Q= (Vu)V+ie-v+e < |Vulg?

|Vu| ~ q, Qis cubic.
» Nonlinear lower bounds

1 .
D(q) = aAq — 5A (4°) > c(|lofl~) " ¢°

hold pointwise, for g = 0;6. (Useful when ||6]|1 < ||60]|1e<.)



Critical SQG in bounded domains

Let Q C R? be open, bounded, smooth.

00 +u- VO +Apf =0
u=R50, Rp = VA,'
Ojt—0 = o

Main result: Global interior Lipschitz regularity

Additional challenges to the whole space case:

1. No explicit kernels. Need eigenfunction expansion and heat kernel.
2. No translation invariance. Need commutators of Ap with finite
difference operators, properly localized.



Critical SQG in bounded domains

Let Q C R? be open, bounded, smooth.
00+ u-VO+NApf =0

u=R50, Rp = VA,'
0)t=0 = tho

Main result: Global interior Lipschitz regularity

Additional challenges to the whole space case:

1. No explicit kernels. Need eigenfunction expansion and heat kernel.
2. No translation invariance. Need commutators of Ap with finite
difference operators, properly localized.

Strategy of proof:
1. L*>° bounds (Convex damping inequality)

101 < [[B0][Lo-
2. Global interior Holder estimates with exponent «, where
allfol|L~ < 1.

3. Global interior gradient bounds.



The Dirichlet Fractional Laplacian
Recall the eigenfunction expansion for the Dirichlet Laplacian:

—AW =AW, Wjpq =0

We have

f=> fw, f= / fwidx, Aof = N hw

Q

We mainly use a formula based on the heat kernel:

((-8)000 = s [ 1700 - 200l e
where (e'2f)(x) = [, Ho(t, x, y)f(y)dy is the heat operator.

Ao =(=B)2,  D(Ap) = Hj(Q)
Gaussian bounds for Hp in ©. Denote
d(x) = dist(x,09).

We have

Vot XY _ o f @ V= d(x).
HD(taX7y) -

(1 ) i vE< d(x)




The convex damping inequality

Proposition (C, | ’16)

Let Q be a bounded domain with smooth boundary. There exists a
constant ¢ > 0 depending only on Q such that for any ¢, a C?> convex
function satisfying ®(0) = 0, and any f € C;°(R2), the inequality

O'(f)Apf — Np(®(f)) == (fo'(f) — &(f)) > 0

holds pointwise in Q.



The convex damping inequality

Proposition (C, | ’16)

Let Q be a bounded domain with smooth boundary. There exists a
constant ¢ > 0 depending only on Q such that for any ¢, a C?> convex
function satisfying ®(0) = 0, and any f € C;°(R2), the inequality

' (f)Apf — Ap(®(f)) >~ (fo'(f) — &(f)) > 0
holds pointwise in Q.

The proof follows from approximation, convexity, and the fact that
© =e'™10obeys0 < © < 1and

Apl1 = / .
0

nlw

(1 —O(x, t)dt > ed(x)™!



The Nonlinear Bound for derivatives

Theorem (C, 1°16)

Letf e L>(Q)ND(Ap). Assume that f = 00 with 6 € L>°(Q) and 0 a
first order derivative. Then there exist constants ¢, C depending on Q
such that

1 2 —1¢ 3 C »
_ > - .
f/\Df 2/\Df = C(HQHL ) |fd| + d(X)f

holds pointwise in Q, with

[fa(x) —{ Ol if [f(x)] = C\leg?:)m’

. 6 oo
0 if |f(X)| < CH HLX)Q




The Nonlinear Bound for derivatives

Theorem (C, 1°16)

Letf e L>(Q)ND(Ap). Assume that f = 00 with 6 € L>°(Q) and 0 a
first order derivative. Then there exist constants ¢, C depending on Q
such that

1 2 —1¢ 3 C »
_ > - .
f/\Df 2/\Df = C(HQHL ) |fd| + d(X)f

holds pointwise in Q, with

[fa(x) —{ Ol if [f(x)] = Cuel‘yﬁ‘;‘;m,

. 6 oo
0 if |f(X)| < CH HLX)Q

Proof: uses precise bounds on the heat kernel and

D(f) = fApf — LApf?
=0 Jo~ t72dt [ Ho(x, y, )(f(x) = f(¥))2dy + 70f2(x)Ap1

holds for all x € Q.



Global interior Holder bounds for the critical SQG

Q smooth bounded domain.
Theorem (C, 1°16)

Let 6(x,t) be a smooth solution of

0 + (R50) - VO + Aph = 0
on a time interval [0, T), with T < oo, with initial data 6(x,0) = 6o(x). Then
the solution is uniformly bounded,

sup_[|6(t)[leoe (@) < (|60l (-

0<t<T

There exists o depending only on ||6o|| .- () @nd Q, and a constant T
depending only on the domain Q such that

sup [|6(t)llca(a) < T6ollco (o),
0<t<T

where the interior C* norm is ||f||co ) = ||f||oo(q) + [flce (@) With

[flce (@) = supd(x)*  sup w
X€Q h-£0,|hl <d(x) [h]



Global interior gradient bounds

Theorem (C, 1’16)

Let 6(x, t) be a smooth solution of

00 + (R50) - VO + Aph = 0

on a time interval [0, T), with T < oo, with initial data 6(x,0) = 6o(x).
There exists a constant 'y depending only on Q such that

sup  d(x)|Vxb(x, 1] < Ty |supd(x)|Vabo(x)| + (1 + 0]l ()
xeQ,0<t<T XeQ

holds.



Commutator estimates, Q2 C R?

Theorem (C, 1’16)
Leta € W?P(Q) with p > 2. There exists a constant C, such that

&, Aolflly b < Cllallwzr@llflly 0

holds for any f € D (A%).
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Commutator estimates, Q2 C R?

Theorem (C, 1’16)
Leta € W?P(Q) with p > 2. There exists a constant C, such that

&, Aolflly b < Cllallwzr@llflly 0

holds for any f € D (A%).

Theorem (C, 1°16)

Letac (Wzvp(Q))2 with p > 2. Assume that ajsq - n = 0. There
exists a constant C such that

la- ¥, Aolflly o < Cllallwere I fll3.0
3
holds for any f € D (/\5).

The proofs are based on harmonic extension, cancellation, and
elliptic regularity.



Linear drift-diffusion equation with nonlocal diffusion
Let Q c R? be a bounded open domain with smooth boundary.

00 +u-VO+Npf =0

Q(X,O) =6y
with the constraint
9|BQ = 0
Assumptions for u = u(x, t):
» V-u=0,
» ucl?0,T;(W2P(Q))?), p>2
> Uoq- - N= 0.



Linear drift-diffusion equation with nonlocal diffusion
Let Q c R? be a bounded open domain with smooth boundary.

00 +u-VO+Npf =0

9(X7 O) =6y
with the constraint
9| o0 — 0

Assumptions for u = u(x, t):

» V-u=0,

> u€ L0, T (W2P(Q))?), p>2

> Uoq- - N= 0.
Theorem (C, 1°16)
The equation with 6y € H}(2) N H?(Q2) has unique solutions

0 € L>=(0, T; H3(Q) N H3(Q)) N L3(0, T; H?3(Q)).
Ify € LP(Q2),1 < p < 0, then

sup [[0(-, D)l o) < 110ol|r(0)-
0<t<T



Critical SQG in bounded domains

Local existence of smooth solutions: proof using methods above for
linear drift-diffusion equations.

Global weak solutions:

Theorem (C, 1’16)
Let6y € L?(Q) and let T > 0. There exists a weak solution

6 € L(0, T: [2(Q)) N L2(0, T; D(AS))

satisfying lim;_,00(t) = 0o weakly in L?(%).



Critical SQG in bounded domains

Local existence of smooth solutions: proof using methods above for
linear drift-diffusion equations.

Global weak solutions:

Theorem (C, 1’16)
Let6y € L?(Q) and let T > 0. There exists a weak solution

0 € L(0, T; L3(R)) N L2(0, T; D(A}))
satisfying lim;_,00(t) = 0o weakly in L?(%).
> O obeys the energy inequality
210+ [ [ joRaxar < ol
0o Ja

fora.e. t > 0.
» the dissipation Ap6 can be replaced by A0 for s € (0, 2].



Inviscid SQG in bounded domains

Constantin, Nguyen '17: Let 6 € L2(Q2). There exists a weak solution
0 € L>=([0,00); L2(2)); that is, forany T > 0 and ¢ € C3°((0, T) x Q)

T T
/ / 0(x, t)0ro(x, t)dxdlt + / / 0(x, )u(x, 1) - Vo(x, t)dxat = 0.
0 Q 0 Q
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Inviscid SQG in bounded domains

Constantin, Nguyen '17: Let 6 € L2(Q2). There exists a weak solution
0 € L>=([0,00); L2(2)); that is, forany T > 0 and ¢ € C3°((0, T) x Q)

T T
/ / 0(x, t)0ro(x, t)dxdlt + / / 0(x, )u(x, 1) - Vo(x, t)dxat = 0.
0 Q 0 Q

Moreover, 6 obeys the energy inequality

||'9(t)||§2(9) < ||90H%2(Q) forae. t>0.

Constantin, I., Nguyen '18: Weak solutions of 9;0 4 u- V0 +vA30 =0
converge to weak solutions of 9;0 + u-V# =0as v — 0.

Commutator structure:

1o _1 L1 _1 Loy
/Q/\wV v - Vodx = 2/Q[/\,V | - Vopdx Z/QV P - [N\, Volypdx

for v = A=10 € HI(Q) and ¢ € C3°(Q).



Elements of the proof for the Holder bound

» Gaussian bounds for the heat kernel; cancelation due to
translation invariance effective for small time

» Good cutoff y and bound for the commutator [64, Ap] away from
boundary (the most expensive term, fighting boundary repulsion)

» Nonlinear maximum principle (lower bound for Ap) giving
smoothing and a strong boundary repulsion damping effect

» Finite difference bounds for Riesz transforms using the nonlinear
maximum principle bound in its finite difference version



Elements of the proof for the Holder bound

» Gaussian bounds for the heat kernel; cancelation due to
translation invariance effective for small time

» Good cutoff y and bound for the commutator [64, Ap] away from
boundary (the most expensive term, fighting boundary repulsion)

» Nonlinear maximum principle (lower bound for Ap) giving
smoothing and a strong boundary repulsion damping effect

» Finite difference bounds for Riesz transforms using the nonlinear
maximum principle bound in its finite difference version

Equation for the finite difference 6,0(x) = 6(x + h) — 0(x):

(Ot + UV +6pu - Vi) (6n0) + Ap(dn8) + [0n, Ap)0 = 0.



Good cutoff

Lemma
Let Q be a bounded domain with C? boundary. For ¢ > 0 small
enough (depending on Q1) there exist cutoff functions y with the

properties:
» 0<x <1 * i
> x(y)=0ifd(y) < g D L
> x(y)=1ford(y) > ;
> |[VAx| < Ct=* with C independent of ¢ pY
(1- c
> Jofie ﬁzyﬂ < qxy *
- [, [Vx(y c - Kols)

-

[x— Y\Z = d(x) o
hold forj > 0 and d(x) > . f

Useful because of the Gaussian bounds on the heat kernel. Makes work in
look like work in half-space without changing coordinates.




Translation invariance effect
Using the definition of Ap and integration by parts
IV Aolf() = s [ [ (V4 9, )Mol 01 (y) et
Important additional bounds we need are

d(x)?

(Vx+ V) Ho(x,y, 1) < Ct 2~ fe "

and
d(x)?

hx, 1) = / (Vs + ¥y )Ho(x.y, ] dy < Ct~3e~ %
Q

valid for t < cd(x)2. Nonsingular at x = y.



Translation invariance effect
Using the definition of Ap and integration by parts
IV Aolf() = s [ [ (V4 9, )Mol 01 (y) et
Important additional bounds we need are

d(x)?

(Vx+ V) Ho(x,y, 1) < Ct 2~ fe "

and

hot) = [ 1(Tx+ 9y Holxy. ] dy < Cthe
Q
valid for t < cd(x)?. Nonsingular at x = y. These imply that
t
/ s~ 21(x,s)ds < d(x) 2
0

for small time.



Commutator

Let x be a good cutoff with scale ¢ > 0. Denote

Sp(x) = 0(x + h) — 0(x).

Lemma

There exists a constant Iy such that the commutator

Ch(e) = 5h/\D9 — /\D(Xéhe)
obeys

1CH(0)(x)]| < rod(’;')znenpo(m

ford(x) > ¢, |h| < {5 and 6 € H{(Q) N L=(Q).



The nonlinear bound for finite differences

Theorem
Let x € C3°(Q2) be a good cutoff with scale ¢ > 0 and let

F(x) = x(3)(n0(x)) = x(x)(6(x + h) — 6(x)).



The nonlinear bound for finite differences

Theorem
Let x € C3°(Q2) be a good cutoff with scale ¢ > 0 and let

f(x) = x(x)(n0(x)) = x(x)(0(x + h) — 0(x)).
Then

3 2
DIf) = (o) ~ 5(Nof2)(x) = i, B0

holds pointwise in Q when |h| < {5 and d(x) > ¢ with

FOOL, i [F(x)] > M]6]|= (o)
| fa(X)| —{ 0, if 1F(x)| < M||0]| (o) ﬁ f



Finite difference of Riesz transform

Lemma
Let u be given by
u=vV=ay'e

and let x be a good cutoff with a length scale (. Then

anu()] < € (VD) + 16l (s + ) + 1))

holds for d(x) > ¢, p < cd(x), f = xop6 and with C a constant
depending on Q.



Holder bound, idea of proof:

Let x be a good cutoff with a scale ¢ > 0, and |h| < % The equation
for 6,0 implies:

AL (340 + D) + (340)Ci(8) = O

with
Lyg = 8ig+ u- Vg +dpu - Vg + Ap(x2g)



Holder bound, idea of proof:

Let x be a good cutoff with a scale ¢ > 0, and |h| < % The equation
for 6,0 implies:

AL (340 + D) + (340)Ci(8) = O

with
Lyg = 8ig+ u- Vg +dpu - Vg + Ap(x2g)

and

|(6n0)al® N |6n0|2

D(f)2'71‘h|_1 ||9||Loc 4l d(X)

for f = xdp0.



Holder bound, idea of proof:

Let x be a good cutoff with a scale ¢ > 0, and |h| < % The equation
for 6,0 implies:

%Lx (40)2 + D(f) + (358)Cr(0) = O

with
Lyg = 8ig+ u- Vg +dpu - Vg + Ap(x2g)
and 00l |30
_11(6n0)q opb
D(f) > ~4|h|™" +
N 17 TR 6

for f = xd,0. Multiply by |h| =2 where o > 0 will be chosen small
enough:

1 (5h9(X)2 _o |(5hu\ 5h9(X)2 )
—L h|==*D(f) — 2a0—— < “.
2X ( ‘h|2a +‘ | ( ) o |h| |h|20‘ = |Ch(9)”6h9||h|




e-approximation of critical SQG
Let € > 0 and consider the e-approximation of SQG

010+ uc - VO°+ Npb® =0
where -
U = Ve = vt / t-ze! 0t
with initial data 6¢(0) = 6,.

Theorem
For each e > 0, the e-approximation has unique, global, smooth
solutions up to the boundary. The solutions obey bounds

d(x)|Vo<(x, 1) < C

with C depending on Q and ||6o | w.-(q) but not on t nor on e.



e-approximation of critical SQG
Let € > 0 and consider the e-approximation of SQG

010+ uc - VO°+ Npb® =0
where -
U = Ve = vt / t-ze! 0t
with initial data 6¢(0) = 6,.

Theorem
For each e > 0, the e-approximation has unique, global, smooth
solutions up to the boundary. The solutions obey bounds

dX)Ve(x. 1) < C
with C depending on Q and ||6o | w.-(q) but not on t nor on e.
For the proof: note that

INSY< |20y < Cm,ellfoll 20

for any M > 0, and therefore u* is smooth.



Convergence to critical SQG

Theorem

Let6y € L>°(Q2) and let T > 0. Any sequence of solutions of
e-approximations of SQG with e — 0 contains a subsequence 0,
converging strorngly in L2([0, T], L3(2)) to a weak solution

0 € L([0, T], L()) N L2([0, T], D(AD)) of critical SQG.
If g € W'>(Q), then 6 obeys

d(X)|Ve(x, 1) < C

with C depending on Q and |6 || w1, (q)-



Convergence to critical SQG

Theorem

Let6y € L>°(Q2) and let T > 0. Any sequence of solutions of
e-approximations of SQG with e — 0 contains a subsequence 0,
converging strorngly in L2([0, T], L3(2)) to a weak solution

6 € L>=([0, T], L>=(Q)) N L3([0, T],D(/\lg)) of critical SQG.

If g € W'>(Q), then 6 obeys

d(x)|Vé(x,t)| < C

with C depending on Q and |6 || w1, (q)-

For the proof we use that 6, are uniformly bounded in

L>([0, T], L>(2)) hence unf, are bounded in L>=([0, T], L3(R2)), and
010, are bounded in L>=([0, T], H~'(Q)). We then use an Aubin-Lions
lemma with based on L? in time, and with spaces

D(AD) cC L3(Q) ¢ H1(Q).
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Electric field determined by charge density:
Vs-E=p

VgXEIO
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in Q c R3. Boundary conditions at Q. Charge density p confined to
domain © ¢ R? x {0} (two dimensional smectic layer, Morris et al):

p =2qdg
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Electroconvection

Electric field determined by charge density:
Vs-E=p

VgXE:O

in Q c R3. Boundary conditions at Q. Charge density p confined to
domain © ¢ R? x {0} (two dimensional smectic layer, Morris et al):

p =2qdg
carried by a flow in Q
Hq+V-(ug+cEN =0
with o electric conductivity. Conducting fluid confined to domain Q:

Hu+u-Vu—vAu+Vp=qE!l, v.u=0.



Figure: Schematic of the experiment of Morris et al. Side view and top view.



The electrical potential
Smectic conducting fluid, driven by electric current. 2DNS in fluid
region Q C R? x {0}.
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Smectic conducting fluid, driven by electric current. 2DNS in fluid
region Q C R? x {0}. Electrods share boundaries with 9. Two
connected components of 9Q2 kept at two different voltages, V and 0.
Electric field
E=-V30

defined in Q = Q x R with inhomogeneous boundary conditions for
the electric potential ¢.
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The electrical potential
Smectic conducting fluid, driven by electric current. 2DNS in fluid
region Q C R? x {0}. Electrods share boundaries with 9. Two
connected components of 9Q2 kept at two different voltages, V and 0.
Electric field
E=-V30

defined in Q = Q x R with inhomogeneous boundary conditions for
the electric potential ¢.

—A3d = 2q5Q, byg = V7 0.
Solution is

®(x, 2) = dg(x) +{ 2;“;/B\Q;q zz<2007
Parallel component of E

Ell = (=819, —-020,0) 9
Fractional Laplacian emerges:

V- Ell=Apgq



Global Regularity in Bounded Domains

Theorem (Constantin, Elgindi, Ignatova, Vicol ('17))

Let Q c R? open, bounded, with smooth boundary. Let
Up € [HI() N H3(Q))? be divergence-free. Let qo € H}(Q) N H?(Q).
Then the electroconvection system

V-u=0,

ou+u-Vu+Vp=vAu—qV (P +/\51q),
hq+u-Vq+ohpqg=0

with homogeneous Dirichlet boundary conditions for both u and q has
global unique strong solutions,

ue L0, T; [HI(Q) N H2(Q)]2) N L2(0, T; H3(Q)?),

q e L=(0, T; W*(Q) n H3(Q)) N L3(0, T; H3 ().
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Strategy of Proof

1. Good approximation:
(Ot +Um-V+Ap)g=0
coupled with Galerkin for NSE:
OtUm + Aum + P B(Um, Um) = —Prn(qRpq)

From the g equation we get a priori bounds for g € L>(0, T; LP(2)),
independent of un,, using the convex damping inequality in bounded
domains.

2. We use NSE energy bounds to deduce

Um € L>=(0, T; H}(R2)?) N L3(0, T; H3(2)?) are controlled uniformly.
(Rp = VA~ are bounded in LP(f) spaces.)

3. We obtain higher regularity for q.

4. Then we obtain higher uniform regularity for up,.

5. Pass to the limit m — oc.
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Conclusion and Outlook

» Nonlinear lower bounds for Ap can be used to prove global
interior regularity for SQG and electroconvection.

» Commutators are expensive due to lack of translation invariance.

» Uniform, up to the boundary estimates are not available, in
general.

» Construction of global unique weak solution with uniform interior
smoothness is in progress.

» Electroconvection: different configurations.



