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Partially hyperbolic diffeomorphisms

Let M be a compact manifold, and f : M −→ M be a diffeomorphism.

Definition

A diffeomorphism f : M −→ M is said to be a partially hyperbolic
diffeomorphism (PHD) if TM = E s ⊕ E c ⊕ E u

and ∃ numbers 0 < λ < λ′ ≤ µ′ < µ with 0 < λ < 1 < µ s.t. for any
n ≥ 0,

‖dx f
nv‖ ≤ Cλn‖v‖ as v ∈ E s(x),

C−1(λ′)n‖v‖ ≤ ‖dx f
nv‖ ≤ C (µ′)n‖v‖ as v ∈ E c(x),

C−1µn ‖v‖ ≤ ‖dx f
nv‖ as v ∈ E u(x)

hold for some C > 1.

If E c = {0}, then the diffeomorphism is hyperbolic.
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The difference between partially hyperbolic systems and
(completely) hyperbolic systems is that the formal ones have the
center direction E c .
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The difference between partially hyperbolic systems and
(completely) hyperbolic systems is that the formal ones have the
center direction E c .

The motivation of the work is to study statistic properties of
partially hyperbolic systems caused by unstable directions.

Observation

If we “ignore” the center direction in a partially hyperbolic system,

we may “see” some properties that similar to those of hyperbolic

systems.
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Partially hyperbolic diffeomorphisms
Previous results

The difference between partially hyperbolic systems and
(completely) hyperbolic systems is that the formal ones have the
center direction E c .

The motivation of the work is to study statistic properties of
partially hyperbolic systems caused by unstable directions.

Observation

If we “ignore” the center direction in a partially hyperbolic system,

we may “see” some properties that similar to those of hyperbolic

systems.

Remark

All results holds if the systems have a dominate splitting for

unstable subbundle and center-stable subbundle.
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Quasi-stability

Theorem (Zhu-H, 2014)

A PHD f : M −→ M is topologically quasi-stable, that is, ∀
homeomorphism g ∼C0 f , ∃ a continous map π : M −→ M s.t.

π ◦ g = τ ◦ f ◦ π,

where τ is a motion along the center direction.

If f has C 1 center foliation, then τ can be chosen as a motion

along the center leaves
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Quasi-shadowing

Theorem (Zhou, Zhu and H, 2015)

A PHD f has the quasi-shadowing property.

That is, ∀ε > 0, ∃δ > 0 such that any pseudo orbit {xk}
∞
k=−∞,

there is sequence of points {yk}
∞
k=−∞ such that

d(xk , yk) < ε,

and yk+1 is obtained from f (yk) by a motion τ along the center

direction.

If f has C 1 center foliation, then τ can be chosen as a motion

along the center leaves.
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Partitions

Let µ be an f -invariant measure.
Take ε0 > 0 small.
Let P be set of finite partitions α of M, diamα < ε0, µ(∂α) = 0,
i.e. diamA ≤ ε0, µ(∂A) = 0 ∀A ∈ α.
For each β ∈ P, def¡ine η ≥ β such that η(x) = β(x) ∩W u

loc
(x).

η is a measurable partition.
Let Pu denote the set of partitions η obtained this way.

A partition ξ of M is said to be subordinate to unstable manifolds
of f if for µ-a.e. x , ∃rx > 0 s. t. Bu(x , rx ) ⊂ ξ(x) ⊂ W u

loc
(x). It is

clear that any η ∈ Pu is subordinate to unstable manifolds of f .

Any element in Pu is a uncountable partition.
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Definition

Definition

The conditional entropy of f w.r.t. α given η ∈ Pu is defined as

hµ(f , α|η) = lim sup
n→∞

1

n
Hµ(α

n−1
0 |η).

The conditional entropy of f given η ∈ Pu is defined as

hµ(f |η) = sup
α∈P

hµ(f , α|η),

and the unstable metric entropy of f is defined as

huµ(f ) = sup
η∈Pu

hµ(f |η).
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Remarks

Recall

hµ(f , α|η) = lim sup
n→∞

1

n
Hµ(α

n−1
0 |η),

hµ(f |η) = sup
α∈P

hµ(f , α|η), huµ(f ) = sup
η∈Pu

hµ(f |η).
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Remarks

Recall

hµ(f , α|η) = lim sup
n→∞

1

n
Hµ(α

n−1
0 |η),

hµ(f |η) = sup
α∈P

hµ(f , α|η), huµ(f ) = sup
η∈Pu

hµ(f |η).

In the definition of hµ(f , α|η) we take lim sup instead of lim,
because the sequence {Hµ(α

n−1
0 |η)} is not subadditive, since η is

not invariant under f . Therefore, existence of the limit is not
obvious.
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Remarks

Recall

hµ(f , α|η) = lim sup
n→∞

1

n
Hµ(α

n−1
0 |η),

hµ(f |η) = sup
α∈P

hµ(f , α|η), huµ(f ) = sup
η∈Pu

hµ(f |η).

In the definition of hµ(f , α|η) we take lim sup instead of lim,
because the sequence {Hµ(α

n−1
0 |η)} is not subadditive, since η is

not invariant under f . Therefore, existence of the limit is not
obvious.
hµ(f |η) is independent of η, as long as η ∈ Pu . Hence, we actually
have huµ(f ) = hµ(f |η) for any η ∈ Pu .
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Construction of incresing partitions

Let µ be ergodic with positive LE λ1 > λ2 > · · · > λũ > 0.
Let E (1) ⊂ E (2) ⊂ · · · ⊂ E (ũ) denote the corresponding subbundles
and W (1)(x) ⊂ W (2)(x) ⊂ · · · ⊂ W (ũ)(x) the unstable manifolds

such that TxW
(i)(x) = E

(i)
x .

To construct an incresing partition, take z ∈ M, and

Si(z , r) =
⋃

y∈W
(i)
⊥

(z ,r)

W (i)(y , r)

where W
(i)
⊥

(z , r)(z , r) is an open ball of radius r on a surface

transversal to W (i). Then define a partition ξ̂i ,z such that

ξ̂i (y) =

{

W (i)(ȳ , r) if y ∈ Si (z , r),

M \ Si(z , r) otherwise.

Take ξi = ∨j≥0f
j ξ̂i .
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Entropies given by incresing partitions

Recall λ1 > · · · > λũ > 0, W (1)(x) ⊂ · · · ⊂ W (ũ)(x).
We have ξ1 ≥ · · · ≥ ξ(ũ)(x).
ξi is increasing, that is, f

−1ξi ≥ ξi .
Consider the condition entropy

hµ(f , ξi) := Hµ(ξi |f ξi) = Hµ(f
−1ξi |ξi ).

In particular, hµ(f , ξũ) = hµ(f ).
The construction is first given by Pesin for i = ũ to get Pesin’s
formula, and then by Ledrappier - Young for general i to get
Ledrappier - Young’s formula
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Entropies given by incresing partitions

Recall λ1 > · · · > λũ > 0, W (1)(x) ⊂ · · · ⊂ W (ũ)(x).
We have ξ1 ≥ · · · ≥ ξ(ũ)(x).
ξi is increasing, that is, f

−1ξi ≥ ξi .
Consider the condition entropy

hµ(f , ξi) := Hµ(ξi |f ξi) = Hµ(f
−1ξi |ξi ).

In particular, hµ(f , ξũ) = hµ(f ).
The construction is first given by Pesin for i = ũ to get Pesin’s
formula, and then by Ledrappier - Young for general i to get
Ledrappier - Young’s formula

Let λ1 > λ2 > · · · > λu > 0 be the Lyapunov exponents in Eu, the
strong unstable subbundle. (So u ≤ ũ.)
Denote by Qu the set of all ξu.
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The equivalence

Theorem A

Suppose µ is an ergodic measure. Then for any α ∈ P, η ∈ Pu

and ξ ∈ Qu ,

hµ(f , α|η) = hµ(f , ξ).

Hence, huµ(f ) = hµ(f |η) = hµ(f , ξ).
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The equivalence

Theorem A

Suppose µ is an ergodic measure. Then for any α ∈ P, η ∈ Pu

and ξ ∈ Qu ,

hµ(f , α|η) = hµ(f , ξ).

Hence, huµ(f ) = hµ(f |η) = hµ(f , ξ).

Corollary A.1

huµ(f ) ≤ hµ(f ), and “=” holds if f is C 1+α, and there is no

positive Lyapunov exponent in E c at µ-a.e. x ∈ M.
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The equivalence

Theorem A

Suppose µ is an ergodic measure. Then for any α ∈ P, η ∈ Pu

and ξ ∈ Qu ,

hµ(f , α|η) = hµ(f , ξ).

Hence, huµ(f ) = hµ(f |η) = hµ(f , ξ).

Corollary A.1

huµ(f ) ≤ hµ(f ), and “=” holds if f is C 1+α, and there is no

positive Lyapunov exponent in E c at µ-a.e. x ∈ M.

Corollary A.2

huµ(f ) = hµ(f , α|η) = lim
n→∞

1

n
Hµ(∨

n−1
i=0 f

−iα|η) ∀α ∈ P, η ∈ Pu .
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Affineness and upper semi-continuity

Let Mf (M) denote the set of all f -invariant probability measures
on M.

Proposition (Affineness)

The map µ 7→ huµ(f ) from Mf (M) to R
+ ∪ {0} is affine.
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Affineness and upper semi-continuity

Let Mf (M) denote the set of all f -invariant probability measures
on M.

Proposition (Affineness)

The map µ 7→ huµ(f ) from Mf (M) to R
+ ∪ {0} is affine.

Proposition (Upper semi-continuity)

The unstable entropy map µ 7→ huµ(f ) from Mf (M) to R
+ ∪ {0} is

upper semi-continuous at µ. i.e.

lim sup
ν→µ

huν(f ) ≤ huµ(f ).
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A version of Shannon-McMillan-Breiman theorem

Theorem B

Suppose µ is an ergodic measure of f . Let η ∈ Pu be given. Then

for any partition α with Hµ(α|η) <∞, we have

lim
n→∞

1

n
Iµ(α

n−1
0 |η)(x) = hµ(f , α|η) µ-a.e.x ∈ M.
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A version of Shannon-McMillan-Breiman theorem

Theorem B

Suppose µ is an ergodic measure of f . Let η ∈ Pu be given. Then

for any partition α with Hµ(α|η) <∞, we have

lim
n→∞

1

n
Iµ(α

n−1
0 |η)(x) = hµ(f , α|η) µ-a.e.x ∈ M.

Corollary B.1

Let µ be f -ergodic and ξ ∈ Qu . Then for any partition α with

Hµ(α|ξ) <∞, we have

lim
n→∞

1

n
Iµ(α

n−1
0 |ξ)(x) = hµ(f , α|ξ) µ-a.e.x ∈ M,

where hµ(f , α|ξ) is defined as in definition for hµ(f , α|η) with η
replaced by ξ.
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Denote by du the metric induced by the Riemannian structure on
the unstable manifold and let du

n (x , y) = max
0≤j≤n−1

du(f j(x), f j(y)).

Let W u(x , δ) be the open ball inside W u(x) centered at x of
radius δ with respect to the metric du.
Let Nu(f , ǫ, n, x , δ) be the maximal number of points in W u(x , δ)
with pairwise du

n -distances at least ǫ. We call such set an (n, ǫ)
u-separated set of W u(x , δ).

Definition

The unstable topological entropy of f on M is defined by

hutop(f ) = lim
δ→0

sup
x∈M

hutop(f ,W
u(x , δ)),

where
hutop(f ,W

u(x , δ)) = lim
ǫ→0

lim sup
n→∞

1

n
logNu(f , ǫ, n, x , δ).
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Using (n, ǫ) u-spanning set

A set E ⊂ W u(x) is called an (n, ǫ) u-spanning set of W u(x , δ) if
W u(x , δ) ⊂

⋃

y∈E Bu
n (y , ǫ), where

Bu
n (y , ǫ) = {z ∈ W u(x) : du

n (y , z) ≤ ǫ} is the (n, ǫ) u-Bowen ball
around y .
Let Su(f , ǫ, n, x , δ) be the cardinality of a minimal (n, ǫ)
u-spanning set of W u(x , δ). Then we also have

hutop(f ,W
u(x , δ)) = lim

ǫ→0
lim sup
n→∞

1

n
log Su(f , ǫ, n, x , δ).

Recall
hutop(f ) = lim

δ→0
sup
x∈M

hutop(f ,W
u(x , δ)).

Lemma

hutop(f ) = supx∈M hutop(f ,W
u(x , δ)) for any δ > 0.
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Using open covers

Let CM denote the set of open covers of M. Given U ∈ CM , denote
Un
m :=

∨n
i=m f −iU . For any K ⊂ M, set

N(U|K ) := min{Card(V) : V ⊂ U ,
⋃

V∈V

⊃ K}.

H(U|K ) := logN(U|K ).

Definition

We define
h̃utop(f ) = lim

δ→0
sup
x∈M

h̃utop(f ,W
u(x , δ)),

where
h̃utop(f ,W

u(x , δ)) = sup
U∈CM

lim sup
n→∞

1

n
H(Un−1

0 |W u(x , δ)).

Lemma

h̃utop(f ,W
u(x , δ)) = hutop(f ,W

u(x , δ)). So, h̃utop(f ) = hutop(f ).
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Volume growth was used by Yomdin and Newhouse for the entropy
of diffeomorphisms. The unstable volume growth for partially
hyperbolic systems is used by Hua-Saghin-Xia, which is defined as
following:

χu(f ) = sup
x∈M

χu(x , δ) (1)

where
χu(x , δ) = lim sup

n→∞

1

n
log(Vol(f n(W u(x , δ))). (2)

Theorem C

hutop(f ) = χu(f ).

Corollary C.1

hutop(f ) ≤ htop(f ), and “=” holds if there is no positive

Lyapunov exponent in E c direction at ν-a.e. w.r.t. any ergodic

measure ν.
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Upper bound of htop(f ) using h
u
top(f )

Hua-Saghin-Xia proved that ∀ ergodic measure µ,

hµ(f ) ≤ χu(f ) +
∑

λc
i
>0

λci mi ,

where χu(f ) denotes the volume growth of the unstable foliation.
Let

σ(i) = lim
n→∞

1

n
log

∥

∥

∥

∧i
Df n|E c

∥

∥

∥
, ∀1 ≤ i ≤ dimE c ,

where
∧i is the ith outer product. Then let

σ = max{σ(i) : i = 1, · · · ,dimE c}.

We give the topological version of the formula given by H-S-X:

Corollary C.2

htop(f ) ≤ hutop(f ) + σ, “=” holds if σ(1) ≤ 0.
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Transversal topological entropy

Let N(f , ǫ, n, x , δ) be the maximal number of points in a
(n, ǫ)-separating set in B(x , δ).

Definition

The transversal topological entropy of f on M is defined by

httop(f ) = lim
δ→0

sup
x∈M

httop(f ,B(x , δ)),
where

httop(f ,B(x , δ)) = lim
ǫ→0

lim sup
n→∞

1

n

[

logN(f , ǫ, n, x , δ)−log Nu(f , ǫ, n, x , δ)
]

.

Corollary C.3

htop(f ) ≤ hutop(f ) + httop(f ).
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Variational principle

Denote by Mf (M) the set of probability invariant measures on M

and by Me
f (M) the set of ergodic measures on M

Theorem D

Let f : M → M be a C 1-partially hyperbolic diffeomorphism. Then

hutop(f ) = sup{huµ(f ) : µ ∈ Mf (M)}.

Moreover,

hutop(f ) = sup{huν(f ) : ν ∈ Me
f (M)}.

The theorem can be proved by the same methods for standard
metric entropy and topological entropy.
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Unstable topological pressure

Recall that an (n, ǫ) u-separated set of W u(x , δ) is a set in which
the du

n -distances of any two points is at least ǫ. Denote by S(n, ε)
the set of (n, ǫ) u-separated set of W u(x , δ).
Let

Pu(f , ϕ, ǫ, n, x , δ) = sup
{

∑

y∈E

exp
(

(Snϕ)(y)
)

: E ∈ S(n, ε)
}

.

Definition

The unstable topological pressure of f w.r.t the potential ϕ is
defined by

Pu(f , ϕ) := lim
δ→0

sup
x∈M

Pu(f , ϕ,W u(x , δ)),

where
Pu(f , ϕ,W u(x , δ)) = lim

ǫ→0
lim sup
n→∞

1

n
logPu(f , ϕ, ǫ, n, x , δ).
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Unstable topological pressure

Two alternative ways to define unstable topological pressure are by
using (n, ǫ) u-spanning sets and by using open covers.

It is clear that
Pu(f , 0) = hutop(f ).
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Variational principle

Theorem E (Variational principle)

Let f : M → M be a C 1 partially hyperbolic diffeomorphism. Then

for any ϕ ∈ C (M,R),

Pu(f , ϕ) = sup
{

huµ(f ) +

∫

M

ϕdµ : µ ∈ Mf (M)
}

.

Moreover, Pu(f , ϕ) = sup
{

huµ(f ) +

∫

M

ϕdµ : µ ∈ Me
f (M)

}

.

Corollary E.1

Pu(f , ϕ) ≤ P(f , ϕ), “=” holds if f is C 1+α, & has no positive

Lyapunov exponent in the E c direction at ν-a.e. ∀ν ∈ Me
f (M).
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u-equilibrium

Definition

Let ϕ ∈ C (M,R). µ ∈ Mf (M) is called a u-equilibrium state for ϕ
if

Pu(f , ϕ) = huµ(f ) +

∫

ϕdµ

Let Mu
ϕ(M, f ) denote the set of all u-equilibrium states for ϕ.

Theorem F

1 Mu
ϕ(M, f ) is nonempty and compact.

2 Mu
ϕ(M, f ) is convex, and the set of extreme points is

Mu
ϕ(M, f ) ∩Me

f (M).

3 If ϕ,ψ ∈ C (M,R), and ∃c ∈ R, h ∈ C (M,R) s.t.
ϕ− ψ = h ◦ f − h + c, then Mu

ϕ(M, f ) = Mu
ψ(M, f ).
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u-equilibrium always exists because of upper semicontinuity of
huµ(f ) and variational principle.
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u-equilibrium always exists because of upper semicontinuity of
huµ(f ) and variational principle.

A measure of maximal unstable entropy is a u-equilibrium state for
the potential 0. So it always exists by Theorem E(1).
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Gibbs u-states

Take potential ϕu(x) = − log |detDf |Eu(x)|.
A Gibbs u-state for a partially hyperbolic system is an invariant
probability measures on M that has absolutely continuous
conditional measures on strong unstable manifolds.

Theorem G

Let f be C 1+α and µ ∈ Mf (M). Then µ is a Gibbs u-state of f if

and only if µ is a u-equilibrium state of ϕu .

Corollary G.1

If f is C 1+α, then Pu(f , ϕu) = 0.
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Gibbs u-states

Corollary G.2

There always exists a Gibbs u-state for any C 1+α partially

hyperbolic diffeomorphism.

Results in Corollary C.2 was obtained for partially hyperbolic
attractor by Pesin-Sinai in 1982.

Jiagang Yang obtained the result for C 1 partially hyperbolic
diffeomorphisms.
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Topological pressure determines Mf (M)

A finite signed measure on M is a map µ : B → R which is
countably additive, where B is the σ-algebra of Borel subsets of M.
Recall that µ ∈ Mf (M) denote the set of probability invariant
measures.

Theorem

Let T : X → X be a continuous map on a compact metric space

X with htop(T ) <∞. Let µ be a finite signed measure. Then

µ ∈ Mf (M) if and only if
∫

M
ϕdµ ≤ P(T , ϕ) ∀ϕ ∈ C (M,R).

The theorem says that when htop(T ) <∞, the pressure of
determines the set Mf (M).

Huyi Hu (joint work with Yujun Zhu, Weisheng Wu & Yongxia Hua)Unstable entropy and pressure for partially hyperbolic systems



Introduction
Unstable metric entropy

Unstable topological entropy
Unstable pressure and u-equilibrium states

Differentiability of ustable pressure

Definition
Variational principle
u-equilibrium and Gibbs u-states
Unstable topological pressure determines Mf (M)

Topological pressure determines Mf (M)

A finite signed measure on M is a map µ : B → R which is
countably additive, where B is the σ-algebra of Borel subsets of M.

Theorem

Let T : X → X be a continuous map on a compact metric space

X with htop(T ) <∞. Let ν ∈ MT (M). Then

hν(T ) = inf

{

P(T , ϕ) −

∫

M

ϕdν : ϕ ∈ C (M,R)

}

if and ony if the entropy map µ→ hµ(T ) is upper semicontinuous.

The above two theorems can be seen in the book by Peter Walters.
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Topological pressure determines Mf (M)

Note that in our setting we have hutop(f ) <∞ and upper
semicontinuity of the entropy map µ→ huµ(f ).

Theorem H

1 Let µ be a finite signed measure. Then µ ∈ Mf (M) if and
only if

∫

M
ϕdµ ≤ Pu(f , ϕ) ∀ϕ ∈ C (M,R).

2 Let ν ∈ Mf (M). Then

huν(f ) = inf

{

Pu(f , ϕ) −

∫

M

ϕdν : ϕ ∈ C (M,R)

}

.

We mention here that the first part is still true even if we replace
P(f , ϕ) by Pu(f , ϕ) ≤ P(f , ϕ).
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u-tangent functional

Definition

Let ϕ ∈ C (M,R). A u-tangent functional to Pu(f , ·) at ϕ is a
finite signed measure µ : B → R such that

Pu(f , ϕ+ ψ)− Pu(f , ϕ) ≥

∫

M

ψdµ, ∀ψ ∈ C (M,R).

Let tuϕ(M, f ) be the set of u-tangent functionals to Pu(f , ·) at ϕ.

Theorem I

Mu
ϕ(M, f ) = tuϕ(M, f ).

In classical case for the equality Mϕ(M , f ) = tϕ(M , f ) upper
semicontinuity of the map µ 7→ hµ(f ) is required.

The assumption is always holds for µ 7→ huµ(f ).
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Gateaux differentiability

Definition

The unstable topological pressure Pu(f , ·) : C (M,R) → R is said
to be Gateaux differentiable at ϕ if

lim
t→0

1

t
(Pu(f , ϕ+ tψ)− Pu(f , ϕ))

exists for any ψ ∈ C (M,R).

Theorem J

Pu(f , ·) is Gateaux differentiable at ϕ if and only if there is a

unique unstable tangent functional to Pu(f , ·) at ϕ, if and only if

there is a unique u-equilibrium state of ϕ..

The last equivalent conditions follows from the first ones and
Theorem I.
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Fréchet differentiability

Definition

Pu(f , ·) : C (M,R) → R is said to be Fréchet differentiable at ϕ if
∃γ ∈ C (M,R)∗ such that

lim
ψ→0

|Pu(f , ϕ+ ψ)− Pu(f , ϕ)− γ(ψ)|

‖ψ‖
= 0.

Fréchet differentiability of Pu(f , ·) is stronger than Gateaux
differentiability of Pu(f , ·), either by the definitions or by Theorem
J and Theorem K below.
Hence, Fréchet differentiability of Pu(f , ·) also implies the
uniqueness of u-equilibrium state.
Let µn → µ denote the convergence in weak∗ topology, and

‖µn − µ‖ → 0 the convergence in norm topology on Mf (M).
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Theorem K

The following statements are mutually equivalent.

1 Pu(f , ·) is Fréchet differentiable at ϕ.

2 ∃µϕ ∈ Mf (M) s.t. (µn) ⊂ Mf (M) with
huµn

(f ) +
∫

M
ϕdµn → Pu(f , ϕ) implies ‖µn − µϕ‖ → 0 as n → ∞.

3 tuϕ(M , f ) = {µϕ} and

Pu(f , ϕ) > sup
{

huµ(f ) +
∫

M
ϕdµ : µ is ergodic and µ 6= µϕ

}

.

4 tuϕ(M , f ) = {µϕ} and ∃ a weak∗ neighborhood V ∋ µϕ s.t.

huµϕ
(f ) > sup{huµ(f ) : µ ∈ V is ergodic and µ 6= µϕ}.

5 Pu(f , ·) is affine on a neighborhood of ϕ.

6 tuϕ(M , f ) = {µϕ}& sup{‖µ− µϕ‖ : µ ∈ tuϕ+ψ(M , f )} → 0 as ψ → 0.

7 tuϕ(M , f ) = {µϕ} & inf{‖µ−µϕ‖ : µ ∈ tuϕ+ψ(M , f )} → 0 as ψ → 0.
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Thank you!
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